JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Selection of efficient coordinate partitioning methods in flexible multibody systems
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Selection of efficient coordinate partitioning methods in flexible multibody systems
Kim, Oe-Jo; Yoo, Wan-Suk;
  PDF(new window)
 Abstract
In multibody dynamics, differential and algebraic equations which can satisfy both equation of motion and kinematic constraint equation should be solved. To solve these equations, coordinate partitioning method and constraint stabilization method are commonly used. In the coordinate partitioning method, the coordinates are divided into independent and dependent and coordinates. The most typical coordinate partitioning method are LU decomposition, QR decomposition, and SVD (singular value decomposition). The objective of this research is to find an efficient coordinate partitioning method in the dynamic analysis of flexible multibody systems. Comparing two coordinate partitioning methods, i.e. LU and QR decomposition in the flexible multibody systems, a new hybrid coordinate partitioning method is suggested for the flexible multibody analysis.
 Keywords
Flexible Multibody System;Modal Coordinates;Coordinate Partitioning;LU Decomposition;QR Decomposition;
 Language
Korean
 Cited by
1.
실시간 시뮬레이션을 위한 기호연산기법의 유용성 검증에 관한 연구,최대한;유완석;

대한기계학회논문집A, 2000. vol.24. 7, pp.1878-1884 crossref(new window)
 References
1.
J. Structural Mechnics, 1986. vol.14. 1, pp.105-126

2.
J. Structural Mechanics, 1986. vol.14. 2, pp.177-189

3.
Department of Mechanical Engineering, 1988.

4.
ASME J. Mech. Des., 1982. vol.104. pp.247-255

5.
ASME J. Mech. Trans. Auto. Des., 1986. vol.108. pp.183-188

6.
ASME J. Mech. Trans. Auto. Des., 0000. vol.107. pp.82-87

7.
ASME J. Mech. Trans. Auto. Des., 1987. vol.109. pp.405-411

8.
Computer Methods in Applied Mechanics and Engineering, 1972. pp.1-16

9.
ASME J. Mech. Trans. Auto. Des., 1985. vol.107. pp.488-492

10.
Computational Dynamics, 1994.

11.
J. Guidance and Control, 1978. vol.1. 3, pp.173-128

12.
Computer Solution of Ordinary Differential Equations: The Initial Value Problem, 1975.