JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Tensile Mean Strain Effects on the Fatigue Life of SiC-Particulate-Reinforced Al-Si Cast Alloy Composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Tensile Mean Strain Effects on the Fatigue Life of SiC-Particulate-Reinforced Al-Si Cast Alloy Composites
Go, Seung-Gi;
  PDF(new window)
 Abstract
The low-cycle fatigue behaviour of a SiC-particulate-reinforced Al-Si cast alloy with two different volume fractions has been investigated from a series of strain-control led fatigue tests with zero and nonzero tensile mean strains. The composites including the unreinforced matrix alloy, exhibited cyclic hardening behaviour, with more pronounced strain-hardening for the composites with a higher volume fraction of the SiC particles. For the tensile mean strain tests, the initial high tensile mean stress relaxed to zero for the ductile Al-Si alloy, resulting in no influence of the tensile mean strain on the fatigue life of the matrix alloy. However, tensile mean strain for the composite caused tensile mean stresses and reduced fatigue life. The pronounced effects of mean strain on the low-cycle fatigue life of the composite compared to the unreinforced matrix alloy were attributed to the initial large prestrain and non-relaxing high tensile mean stress in the composite with very limited ductility and Cyclic plasticity. Fatigue damage parameter using strain energy, density efficiently accounted for the mean stress effects. Predicted fatigue life using the damage parameter correlated fairly well with the experimental life within a factor of 3. Also, the fatigue damage parameter indicated the inferior life in the low-cycle regime and superior life in the high-cycle regime for the composite, compared to the unreinforced matrix alloy.
 Keywords
Particulate-Reinforced Composite;Low-Cycle Fatigue;Mean Strain;Mean Stress;Cyclic Plasticity;Fatigue Damage Parameter;Fatigue Life;
 Language
Korean
 Cited by
 References
1.
An Introduction to Metal Matrix Composites, 1993.

2.
Journal of Minerals, 1991. vol.43. 4, pp.10-15

3.
대한기계학회논문집, 1995. vol.19. 9, pp.2122-2132

4.
Metallurgical Transactions A, 1985. vol.16A. pp.1105-1115

5.
Acta Metall. Mater., 1991. vol.39. 1, pp.59-71

6.
International Journal of Fatigue, 1992. vol.14. pp.173-182

7.
대한기계학회논문집(A), 1996. vol.20. 11, pp.3474-3490

8.
대한기계학회논문집, 1995. vol.19. 1, pp.121-131

9.
대한기계학회논문집, 1995. vol.19. 11, pp.2787-2796

10.
Metallurgical Transactions A, 1991. vol.22A. pp.1007-1019

11.
Metallurgical Transactions A, 1994. vol.25A. pp.2265-2274

12.
Materials Science and Technology, 1988. vol.4. pp.513-517

13.
Materials Transactions, 1996. vol.37. pp.763-768

14.
Composites Science and Technology, 1997. vol.57. pp.237-248

15.
Composites Science and Technology, 1993. vol.49. pp.303-313

16.
Metallurgical Transactions A, 1993. vol.24A. pp.2545-2557

17.
Acta Metall., 1989. vol.37. 8, pp.2267-2278

18.
Scripta Metallurgica et Materialia, 1995. vol.33. 5, pp.781-787

19.
Fatigue '93, 1993. pp.1123-1128

20.
Fundamentals of Cyclic Stress and Strain, 1972.

21.
Fatigue and Fracture of Engineering Materials and Structures, 1991. vol.14. 4, pp.413-428

22.
Materials Science and Engineering, 1997. vol.A234. pp.198-201

23.
Scripta Metallurgica, 1984. vol.18. pp.25-28

24.
대한기계학회논문집, 1995. vol.19. 6, pp.1422-1430

25.
Acta Metall., 1988. vol.36. 7, pp.1691-1704

26.
Acta Metall. Mater., 1991. vol.39. 1, pp.73-87

27.
Composites, 1993. vol.24. pp.282-287

28.
ASME J. Pressure Vessel Technology, 1988. vol.110. pp.36-41

29.
Fatigue Design Handbook, 1968. vol.4. pp.Chap. 3

30.
J. Materials, 1970. vol.5. 4, pp.767-778