JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Theory of Thin-Walled Curved Rectangular Box Beams Under Torsion and Out-of-Plane Bending
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Theory of Thin-Walled Curved Rectangular Box Beams Under Torsion and Out-of-Plane Bending
Kim, Yun-Yeong; Kim, Yeong-Gyu;
  PDF(new window)
 Abstract
We propose a new one-dimensional theory for thin-walled curved box beams having rectangular cross sections, in which torsional, out-of-plane bending, warping and distortional deformations are coupled. The major difference between the present theory and existing theories lies in that the present theory takes into account additional distortion as well as warping. To verify the present theory, a standard finite element based on the present theory is developed and used for numerical analysis. A couple of numerical examples indeed confirm that the consideration of warping and distortional deformations is very important.
 Keywords
Curved Box Beam;Thin-Walled Beam;Warping;Distortion;Bending;
 Language
Korean
 Cited by
 References
1.
Vlasov, V. Z., 1961, Thin Walled Elastic Beams, Israel Program for Scientific Translations, Jerusalem

2.
김윤영, 김진홍, 송상헌, 1998, '비틀림을 받는 직사각 폐단면 박판보 유한요소 개발,' 대한기계학회논문집(A), 제22권, 제6호, pp. 947-954

3.
Kim, Y. Y. and Kim, J. H., 1999, 'Thin -Walled Closed Box Beam Element for Static and Dynamic Analysis,' International Journal for Numerical Methods in Engineering, Vol. 45, pp. 473-490 crossref(new window)

4.
Kim, J. H. and Kim, Y. Y., 1999, 'Analysis of Thin-Walled Closed Beams with General Quadrilateral Cross Sections,' Journal of Applied Mechanics, ASME, Vol. 66(4), pp. 904-912

5.
Kim, J. H. and Kim, Y. Y., 'Finite Element Analysis of Thin-Walled Closed Beams with General Cross Sections,' to appear in International Journal for Numerical Methods in Engineering

6.
김윤영, 2000년 출간예정, 선형 탄성학과 응용, 문운당

7.
Brookhart, G. C., 1967, 'Circular-Arc I-Type Girders,' Journal of Structural Division, ASCE, Vol. 93, No. ST6, pp. 133-159

8.
El-Amin, F. M., 1976, 'Horizontally Curved Beam Finite Element Including Warping,' International Journal for Numerical Methods in Engineering, Vol. 10, pp. 1397-1428 crossref(new window)

9.
Hsu, Y. T., Fu, C. C. and Schelling, D. R., 1990, 'An Imoroved Horizontally-Curved Beam Element,' Computers & Structures, Vol. 34, No. 2, pp. 313-318 crossref(new window)

10.
Fu, C. C. and Hsu, Y. T., 1995, 'The Development of an Improved Curvilinear Thin-Walled Vlasov Element,' Computers & Structures, Vol. 54, No. 1, pp. 147-159 crossref(new window)

11.
Kang, K., Bert, C. W. and Striz, A. G., 1996, 'Vibration Analysis of Horizontally Curved Beams with Warping Using DQM,' Journal of Structural Engineering, ASCE, Vol. 122, No. 6, pp. 657-662 crossref(new window)

12.
Chu, K. H. and Pinjarkar, S. G., 1971, 'Analysis of Horizontally Curved Box Girder Bridges,' Journal of Structural Division, ASCE, Vol. 97, No. ST10, pp. 2481-2501

13.
Zhang, S. H. and Lyons, L. P. R., 1984, 'A Thin-Walled Box Beam Finite Element for Curved Bridge Analysis,' Computers & Structures, Vol. 18, No. 6, pp. 1035-1046 crossref(new window)

14.
Li, W. Y., Than, L. G. and Cheung, Y. K., 1988, 'Curved Box-Girder Bridges,' Journal of Structural Engineering, ASCE, Vol. 114, No. 6, pp. 1324-1338

15.
Razaqpur, A. G. and Li, H. G., 1994, 'Refined Analysis of Curved Thin-Walled Multicell Box Girders,' Computers & Structures, Vol. 53, No. 1, pp. 131-142 crossref(new window)

16.
Mentrasti, L., 1995, 'Curved Thin-Walled Open-Closed Cross Section Beams with Finite Width,' International Journal of Engineering Science, Vol. 33, No. 4, pp. 497-524 crossref(new window)

17.
Hughes, T. J. R., 1987, The Finite Element Method, Prentice-Hall, Inc., New Jersey

18.
Zienkiewicz, O. C. and Taylor, R. L., 1989, The Finite Element Method, Vol. 1, 4th ed., McGraw-Hill, Inc., London