JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optimal Interpolation Functions of 2-None Hybrid-Mixed Curved Beam Element
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optimal Interpolation Functions of 2-None Hybrid-Mixed Curved Beam Element
Kim, Jin-Gon;
  PDF(new window)
 Abstract
In this paper, we propose a new efficient hybrid-mixed C(sup)0 curved beam element with the optimal interpolation functions determined from numerical tests, which gives very accurate locking-free two-node curved beam element. In the element level, the stress parameters are eliminated from the stationary condition and the nodeless degrees of freedom are also removed by static condensation so that a standard six-by-six stiffness matrix is finally obtained. The numeri cal benchmark problems show that the element with cubic displacement functions and quadratic stress functions is the most efficient.
 Keywords
Curved Bean Element;Hybrid-Mixed Formulation;Optimal Interpolation Functions;Spurious Constraint;
 Language
Korean
 Cited by
1.
효율적인 C0 적층 곡선보 요소의 개발,김진곤;강상욱;

대한기계학회논문집A, 2003. vol.27. 4, pp.559-566 crossref(new window)
2.
고차 혼합 곡선보 요소에 의한 아치의 자유진동해석,박용국;김진곤;

대한기계학회논문집A, 2006. vol.30. 1, pp.18-25 crossref(new window)
 References
1.
Dawe, D. J., 1974, 'Numerical Studies Using Circular Arch Finite Elements,' Comput. Struct., Vol. 4, pp. 729-740 crossref(new window)

2.
Stolarski, H. and Belytschko, T., 1983, 'Shear and Membrane Locking in Curved $C^0$ Elements,' Comp. Methods Appl. Mech. Engng., Vol. 41, pp. 279-296 crossref(new window)

3.
Noor, A. K. and Peters, J. M., 1981, 'Mixed Models and Reduced/Seletive Integration Displacement Models for Nonlinear Analysis fo Curved Beams,' Int. J. Numer. Methods Eng., Vol. 17, pp. 615-631 crossref(new window)

4.
Noor, A. K., Greene, W. H. and Hartley, S. J., 1977, 'Nonlinear Finite Element Analysis of Curved Beams,' Comp. Methods Appl. Mech. Engng., Vol. 12, pp. 289-307 crossref(new window)

5.
Stolarski, H. and Belytschko, T., 1982, 'Membrane Locking and Reduced Integration for Curved Elements,' J. Appl. Mech., Vol. 49, pp. 172-176

6.
문원주, 김용우, 민옥기, 이강원, 1996, '공간곡선보요소에서의 감차최소화 이론,' 대한기계학회논문집, 제20권, 제12호, pp. 3702-3803

7.
Babu, C. Ramesh and Prathap, G., 1986, 'A Linear Thick Curved Beam Element,' Int. J. Numer. Methods Eng., Vol. 23, pp. 1313-1328 crossref(new window)

8.
Prathap, G. and Babu, C. Ramesh, 1986, 'An Isoparametric Quadratic Thick Curved Beam Element,' Int. J. Numer. Methods Eng., Vol. 23, pp. 1583-1600 crossref(new window)

9.
Prathap, G., 1993, The Finite Element Method in Structural Mechanics, Kluwer, Dordrecht

10.
Tessler, A. and Spiridigliozzi, L., 1986, 'Curved Beam Elements with Penalty Relaxation,' Int. J. Numer. Methods Eng., Vol. 23, pp. 2245-2262 crossref(new window)

11.
유하상, 신효철, 1996, '변형률에 근거한 2-절점곡선보 요소,' 대한기계학회논문집, 제 18권, 제 8호, pp. 2540-2545

12.
Lee, P. G. and Sin, H. C., 1994, 'Locking-Free Curved Beam Element Based on Curvature,' Int. J. Numer. Methods Eng., Vol. 37, pp. 989-1007 crossref(new window)

13.
Saleeb, A. F. and Chang, T. Y., 1987, 'On the Hybrid-Mixed Formulation $C^0$ Curved Beam Elements,' Comp. Methods Appl. Mech. Engng., Vol. 60, pp. 95-121 crossref(new window)

14.
Kim, Y. Y. and Kim, J. G., 1996, 'A Simple and Efficient Mixed Finite Element for Axisymmetric Shell Analysis,' Int. J. Numer. Methods Eng., Vol. 39, pp. 1903-1914 crossref(new window)

15.
Kim, J. G. and Kim, Y. Y., 1997, 'A Simple and Efficient Mixed Harmonic Element for Shells of Revolution,' Commum. J. Meth. Engng., Vol. 13, pp. 565-572 crossref(new window)

16.
Kim, J. G. and Kim, Y. Y., 1998, 'A New Higher-Order Hybrid-Mixed Curved Beam Element,' Int. J. Numer. Methods Eng., Vol. 43, pp. 925-940 crossref(new window)

17.
Kim, J. G. and Kim, Y. Y., 2000, 'A Higher-Order Hybrid-Mixed Harmonic Shell-of-Revolution Element,' Comp. Methods Appl. Mech. Engng., Vol. 182, pp. 1-16 crossref(new window)

18.
Cook, R. D., Malkus, D. S. and Plesha, M. E., 1989, Concepts And Applications of Finite Element Analysis, 3rd Edition, Wiely, New York

19.
Wolfram, S., 1991, Mathematica, Second Edition, Addisom-Wesley Publishing Company, Inc.