The Geometrical Mode Analysis of an Elastically Suspended Rigid Body with Planes of Symmetry

Title & Authors
The Geometrical Mode Analysis of an Elastically Suspended Rigid Body with Planes of Symmetry
Dan, Byeong-Ju; Choe, Yong-Je;

Abstract
Vibration modes obtained from a modal analysis can be better explained from a screw theoretical standpoint. A vibration mode can be geometrically interpreted as a pure rotation about the vibration center in a plane and as the twisting motion on a screw in a three dimensional space. This paper, presents the method to diagonalize a spatial stiffness matrix by use of a parallel axis congruence transformation. It also describes that the stiffness matrix diagonalized by a congruence transformation, can have the planes of symmetry depending on the location of the center of elasticity. For a plane of symmetry, any vibration mode can be expressed by the axis of vibration. Analytical solutions for the axis of vibration has been derived.
Keywords
Vibration Mode;Stiffness Matrix;Congruence Transformation;Center of Elasticity;Plane of Symmetry;
Language
Korean
Cited by
1.
탄성적으로 지지된 광디스크 드라이버의 진동모드와 주파수 응답의 기하적 해석,단병주;최용제;

대한기계학회논문집A, 2000. vol.24. 2, pp.362-369
2.
스캐닝 레이저 도플러 진동계를 이용한 모드 해석,강민식;

대한기계학회논문집A, 2000. vol.24. 10, pp.2560-2567
3.
대칭면을 갖는 강체 진동계의 진동모드에 대한 기하학적 해석,단병주;최용제;

대한기계학회논문집A, 2000. vol.24. 1, pp.110-117
4.
직교스프링들에 의해 지지되는 강체의 진동 설계,장선준;이준호;최용제;

대한기계학회논문집A, 2007. vol.31. 1, pp.97-104
References
1.
Griffis, M and Duffy, J., 1991, 'Kinestatic Control : A Novel Theory for Simultaneously Regulating Force and Displacement,' Journal of Mechanical Design, Vol. 113. pp. 508-515

2.
Loncaric, J., 1985, Geometrical Analysis of Compliant Mechanisms in Robotics, Ph.D, Dissertation, Harvard University

3.
Lipkin, H. and Patterson, T., 1992, 'Geometrical Properties of Modeled Robot Elasticity: Part I-Decomposition,' 1992 ASME Design Technical Conference, DE-vol. 45, pp. 179-185

4.
Ciblak, N., and Lipkin, H., 1994, ' Centers of Stiffness, Compliance, and Elasticity in the Modeling of Robotic Systems,' 1994 ASME Design Technical Conference, DE-vol. 72, pp. 185-195

5.
Blanchet, P. and Lipkin, H., 1996, 'Vibration Centers for Planar Motion,' Proc. of 1996 ASME Design Engineering Technical Conference and Computers in Engineering Conference DETC/MECH-1165

6.
단병주, 최용제, 199, '나선이론에 의한 진동해석 및 정보저장기기 설계에의 응용,' 대한기계학회 논문집 A, 제23권 제2호, pp.155-165

7.
최용제, 1991, '나선이론에 의한 로봇의 운동 및 역학적 해석,' 대한기계학회지, 제31권, 제7호, pp. 616-625

8.
Ciblak, N., 1998, Analysis of Cartesian Stiffness and Compliance with Application, Ph. D Dissertation, Georgia Institute of Technology

9.
Harris, C., 1997, Shock and Vibration Handbook 4th, McGraw Hill

10.
Blanchet, P. and Lipkin, H., 1998, 'Dual Properties for Vibration Analysis via Screw Theory,' Proc. of 1998 ASME Design Engineering Technical Conferences, DETC/MECH-5868

11.
정진태, 1997, 'CD-ROM 드라이브 피딩 시스템의 진동해석,' 대한기계학회 동력학 및 제어부문 춘계학술대회 논문집, pp. 97-103