Advanced SearchSearch Tips
Robust Nonlinear /Control for a Parallel Inverted Pendulum
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Robust Nonlinear /Control for a Parallel Inverted Pendulum
Han, Seong-Ik; Kim, Jong-Sik;
  PDF(new window)
A robust nonlinear / control method for a parallel inverted pendulum with structured perturbation and dry friction is proposed. By the random input describing function techniques, the nonlinear dry friction is approximated into the quasi-linear system. Introducing the quadratic robustness theorem, the robust / control system is constructed for the quasi-linear perturbed system. But it is difficult to design a controller due to the nonlinear correction term in Riccati equation. With some transformations on the Riccati equation containing nonlinear correction term, the design of the robust nonlinear controller can be done easily. Hence when the stiffness and mass of the parallel inverted pendulum vary in certain ranges, the proposed control scheme has the robustness for both the structured perturbation and dry friction. The results of computer simulation show the effectiveness of our proposed control method.
Parallel Inverted Pendulum;Describing Function;/ Control;Dry Friction;
 Cited by
Elthohamy, K. G., Kuo, C. Y., 1998, 'Nonlinear Optimal a Triple Link Inverted Pendulum with Single Control Input,' Int. J. Control, Vol. 60, No. 2, pp. 239-256

Anderson, C. W., 1989, 'Learning to Control an Inverted Pendulum Using Neural Networks,' IEEE Control Systems Magazine, Vol. 9, No. 3, pp. 31-37 crossref(new window)

Gurumoortthy, R., Sanders, S. R., 1992, 'Controlling Non-Minimum Phase Nonlinear Systems - The Inverted Pendulum on a Cart Example,' Proc. CDC, pp. 123-128

Vander Linden, G. W., Lambrechts, P. E, 1992, '$H_{\infty}$ Control of an Experimental Inverted Pendulum with Dry friction,' Proc. CDC, pp. 123-128 crossref(new window)

Furta, K., Okutani, T., and Sone, H, 1978, 'Computer Control of a Double Inverted Pendulum,' Computer and Elect. Engr., No. 5, pp. 67-84

Kim, j. S., 1994, 'QLQG/LTR Control for Hard Non-Linear Multivariable Systems,' Instn. Mech. Engrs., j. Systems and Control Eng., Vol. 208, pp. 177-187

Han, S. I., Kim, J. S., 1997, '$H_{\infty}$-Constrained Quasi-Linear Quadratic Gaussian Control with Loop Transfer Recovery, ' KSME Int. J., Vol. 11, No. 3, pp. 255-266

Gelb, A., Vander Velde, W. E., 1968, Multiple Input Describing Function and Nonlinear System Design, McGraw-Hill

Kateb, M. R., Zhang, Y., 1995, '$H_{\infty}$ Control Analysis and Design for Nonlinear Systems,' Int. J. Control, Vol. 61, No. 2, pp. 459-474 crossref(new window)

Rotea, M. A., Khargonekar, P. P., 1991, '$H_2$-Optimal Control with an $H_{\infty}$-Constraint: The State Feedback Case,' Automatica, Vol. 27, No. 2, pp. 307-316 crossref(new window)

Bernstein, D. S., Haddad, 1989, W. M., 'LQG Control with $H_{\infty}$ Performance Bound : A Riccati Equation Approach,' IEEE, Trans., A. C., Vol. 34, No. 3, pp. 293-305 crossref(new window)

Doyle, J. C., Zhou, K., Bodenheimer, B., 'Mixed $H_2$ and $H_{\infty}$ Control,' Proc. ACC, pp. 2502-2507 crossref(new window)

Packard, A., Doyle, J.C., 1993, 'The Complex Structured Singular Value,' Automatica, Vol. 29, pp. 71-109 crossref(new window)

Bernstein, D. S., Haddad, W. M., 1988, 'The Optimal Projection Equations with Petersen-Hollot Bounds : Robust Stability and Performance Compensation via Fixed-Order Dynamic Compensation for Systems with Structured Real-Valued Parameter Uncertainty,' IEEE, Trans., A. C., Vol. 33, No. 6, pp. 578-582 crossref(new window)

Kim, J. S., 1989, 'The QLQG/LTR Control for Nonlinear Systems with a Non-Gaussian Nature', KSME, Vol. 3, No. 2, pp. 113-120

Suzuki, A., Hedrick, J. K., 1985, 'Nonlinear Controller Design by an Inverse Random Input Describing Function Method,' Proc. ACC, pp. 1236-1241 crossref(new window)