Advanced SearchSearch Tips
Dynamic Modeling of an Fine Positioner Using Magnetic Levitation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Dynamic Modeling of an Fine Positioner Using Magnetic Levitation
Jeong, Gwang-Seok; Baek, Yun-Su;
  PDF(new window)
In this paper, we introduce a positioner based on magnetic levitation to eliminate the friction which is the most severe effect to limit high resolution on the micro level. Differently from existing electromagnetic device, the proposed positioner consists of air core solenoid and permanent magnet. Although the combination produces small magnetic force, it is suitable for realizing micro motion repeatedly without the accumulation of error because there is no hysteresis caused by ferromagnetic materials, no eddy current loss, no flux saturation. First, the approximate modeling of stiffness and damping effects between the magnetic elements is made and verified experimentally. Then, we have formulated the dynamic equation of one d.o.f magnetic levitation positioner using linear perturbation method and discussed the necessity of optimization for the chief design parameters to maximize the stability performance.
Magnetic Levitation;Air Core Solenoid;Magnetic Field Density;Magnetic Flux;Electromotive Force;Induced Current;Optimization;
 Cited by
전자기력 조합에 기초한 평면 구동기를 이용한 자기 부상 방식 초정밀 스테이지,정광석;백윤수;

대한기계학회논문집A, 2001. vol.25. 11, pp.1863-1872 crossref(new window)
Jayawant, B. V., 1981, Electromagnetic Levitation and Suspension Techniques, London : Edward Arnold

Atherton, D. L., 1980, 'Maglev Using Permanent Magnets,' IEEE Trans. on Magnetics, Vol. 16, No. 1, pp. 146-148 crossref(new window)

Tsukamoto, O., Chen, J. Z., 1988, 'A New Magnetic Levitation System with AC Magnets,' IEEE Trans. on Magnetics, Vol. 24, No. 2, pp. 1497-1500 crossref(new window)

정호섭, 1993, '원추형 능동 자기베어링계의 모형화 및 제어', 대한기계학회논문집, 제99권, pp. 3073-3082

Imlach, J., 1991, 'Measured and Predicted Force and Stiffness Characteristics of Industrial Magnetic Bearings,' J. of Tribology, ASME, Vol. 113, pp. 784-788

Nagaya, K., 1995, ' A Noncontact Permanent Magnet Levitation Table with Electromagnetic Control and Its Vibration Isolation Method using Direct Disturbance cancellation Combining Optimal Regulators,' IEEE Trans. on Magnetics, Vol. 31, pp. 885-896 crossref(new window)

Tsuda, M., Higuchi, T., and Fujiwara, S., 1987, 'Magnetic Supported Intelligent Hand for Precise Assembly,' in Proc. 13th Ann. IEEE Industrial Electron., Con. (IECON '87), pp. 926-933

Hollis, R. L., Salcudean, S. E., Peter Alia, A., 1991, 'A Six-Degree-of-Freedom Magnetically Levitated Variable Compliance Fine-Motion Wrist: Design, Modeling, and Control,' IEEE Trans. Robotics and Automations, Vol. 7, No. 3, pp. 320-332 crossref(new window)

Echeverria, I., Rubio, M., 1995, 'High-Precision Magnetic Levitation Device with Electro-Optical Feedback, Rev. Sci. Instrum., Vol. 66, pp. 3931-3938 crossref(new window)

Nagaya, K., Arai, N., 1991, 'Analysis of a Permanent Magnet Levitation Actuator With Electromagnetic Control,' J. of Dynamic Systems, Measurement, and Control, ASME, Vol. 113, pp. 472-478

Steve Chen, S. J., Busch-Vishiniac, I. J., 1995, 'A Magnetically Levitated, Automated, Contact Analytical Probe Tool,' IEEE Trans. on Semiconductor Manufacturing, Vol. 8, No. 1, pp. 72-78 crossref(new window)

Purcell, E. M., 1995, Electricity and Magnetism, Vol. 2, McGraw-Hill

Edminster, J. A., Electromagnetics, Schaums outlineseries, McGraw-Hill

Wangsness, Roald K., 1979, Electromagnetic fields, John Wiley & Sons

Vanderplaats, G. N., 1985, 'ADS-A Fortran Program for Automated Design Synthesis Version 1.10,' NASA CR-177985