Advanced SearchSearch Tips
Modeling of the Mechanical Behavior of Polycrystalline Shape-Memory Alloys by a Homogenization Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Modeling of the Mechanical Behavior of Polycrystalline Shape-Memory Alloys by a Homogenization Method
Gu, Byeong-Chun; Jo, Jin;
  PDF(new window)
We obtain a micromechanics-based Helmholtz free energy and then in the framework of irreversible thermodynamics, a kinetic relation, a martensitic nucleation criterion and the reorientation criterion of martensitic variants are obtained. These relations are valid for a three-dimensional proportional and non-proportional loadings and for a combination of mechanical and thermal loading. From the simulated pseudoelastic stress-strain relation of a single crystal with loading rate effect, polycrystalline behavior in case of proportional and non-proportional loading is predicted by a homogenization method. The obtained results are compared quantitatively with experimental results.
Micromechanics;Shape-Memory Alloy;Phase Transformation;Pseudoelasticity;Reorientation;Homogenization;
 Cited by
Ericksen, J. L., 1975, 'Equilibrium of Bars,' J. of Elasticity, Vol. 5, pp. 191-201 crossref(new window)

Falk, F., 1980, 'Model Free Energy, Mechanics and Thermodynamics of Shape Memory Alloy,' Acta metall. mater., Vol 28, 1773-1780

Niezgodka, M. and Sprekels, J., 1988, 'Existance of Solutions for a Mathematical Model of Structural Phase Transitions in Shape Memory Alloys,' J. Math. Methods in the Applied Sciences, Vol. 10, pp. 197-223 crossref(new window)

Muller, I. and Xu, H., 1991, ' On the Pseudoelastic hysteresis,' Acta metall. mater., Vol. 39, pp. 263-271 crossref(new window)

Abeyaratne, R. and Knowles, J. K., 1993, 'A Continuum Model of a Thermoelastic Solid Capable of Undergoing Phase Tranformation,' J. Mech. Phys. Solids, Vol. 41, pp. 541-571 crossref(new window)

Bondaryev, E. N. and Wayman, C. M., 1988, 'Some Stress-Strain-Temperature Relationships for Shape Memory Alloys,' Metall. Trans. A, Vol. 19A, pp. 2407-2413 crossref(new window)

Graesser, E. J. and Cozzarelli, F. A., 'A Proposed Three Dimensional Constitutive Model for Shape Memory Alloys,' J. Intell. mater. Systems and Structures, Vol. 5, pp. 78-89 crossref(new window)

Raniecki, B. and Lexcellent, C, 1994, '$R_L-Models$ of Pseudoelasticity and Their Specification for Some Shape Memory Solids,' Euro. J. Mech. A/Solids, Vol. 13, pp. 21-50

Patoor, E., Eberhardt, A. and Berveiller, M., 1987, 'Potential Pseudoelastique et Plasticite de Transformation Martensitique dans les Mono et Polycristaux Metalliques,' Acta metall. mater, Vol. 35, pp. 2779-2789

Sun, Q. P. and Hwang, K. C, 1993, 'Micromechanics Modelling for the Constitutive Behavior of Polycrystalline Shape Memory Alloys-I. Derivation of General Relations,' J. Mech. Phys. Solids, Vol. 41, pp. 1-17 crossref(new window)

Sun, Q. P. and Hwang, K. C, 1993, 'Micro-mechanics Modelling for the Constitutive Behavior of Polycrystalline Shape Memory Alloys-II. Study of the Individual Phenomena,' J. Mech. Phys. Solids, Vol. 41, pp. 19-33 crossref(new window)

Leo, P. H., Shield, T. W. and Bruno, O. P., 1993, 'Transient Heat Transfer Effects on the Pseudoelastic Behaviour of Shape Memory Wires,' Acta metall. mater, Vol. 41, pp. 2477-2485 crossref(new window)

Wechsler, M. S., Lieberman, D. S. and Read, T. A., 1953, 'On the Theory of the Formation of Martensite,' Trans. AIME, Vol. 197, pp. 1503-1515

Eshelby, J. D., 1957, 'The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems,' Proc. Roy. Soc. A, Vol. 241, pp. 376-396 crossref(new window)

Mori, T. and Tanaka, K., 1973, 'Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions,' Acta. metall. mater., Vol. 21, pp. 571-574 crossref(new window)

Kroner, E., 1961, 'Zur plastischen Verformung des Vielkristalls,' Acta metall. mater, Vol. 9, pp. 155-161 crossref(new window)

Budiansky, B. and Wu, T. T, 1962, 'Theoritical Prediction of Plastic Strains of Polycrystals,' Procd. 4th U.S. Nat. Cong. of Applied Mech., pp. 1175-1185

Mura, T., 1987, Micromechanics of defects in Solids, 2nd ed. Martinus Nijhoff, Dordrecht

Lemaitre, J. and Chaboche, J. C, 1985, Mecanique des Materiaux Solids, ed. Dunod, Paris, pp. 58, 60, 69

Goo, B. C. and Lexcellent, C, 1996, 'Micro-mechanics-based Modeling of Two-way Memory Effect of a Single Crystalline Shape-Memory Alloy.' Acta. metall. mater. Vol. 21, pp. 727-737 crossref(new window)

Pham, H., 1994, Analyse Thermomecanique du Comportement d'un Alliage a Memoire de Forme de Type CuZnAl, Ph. D. Thesis, Universite de Montpellier II, France, p. 91

Hill, R., 1965, 'Continuum Micro-mechanics of Elastoplastic Polycrystals,' J. Mech. Phys. Solids, Vol. 13, pp. 89-101 crossref(new window)

Hutchinson, J. W., 1970, 'Elastic-Plastic Behaviour of Polycrystalline Metals and Composites,' Proc. Roy. Soc. Lond. A., Vol. 319, pp. 247-272

Nemat-Nasser, S. and Obata, M., 1986, 'Rate-dependent, Finite Elasto-Plastic Deformation of Polycrystals,' Proc. Roy. Soc. Lond. A., Vol. 407, pp. 343-375

Cailletaud, G. and Pilvin P., 'Utilisation de modeles polycristallins pour le calcul par elements finis,' Vol. 3, No. 4, pp. 515-542

Kroner, E. 1958, 'Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristals,' Zietschrift fur Physik, Dd. 151, pp. 504-518

Rogueda-Berriet, C, 1993, 'Modelisation Thermo-dynamique du Comportement Pseudoelastique des Alliages a Memoire de Forme,' Ph. D. Thesis, $N^{circ}$ 336, Universite de Franche-Comte, France, pp. 134

Sun, Q. P., Goo, B. C. and Lexcellent, C, 1996, 'Micromechanics-based Modeling of Reorientation Process of a Single Crystalline Shape-Memory Alloy,' SPIE's 1996 Symposium on Smart Structures and Materials, 26-29 February 1996, San diego California, USA, pp. 2715-2746

Goo, B. C, 1999, 'Modeling of the reorientation behavior of a single crystalline shape-memory alloy by a micromechanical approach,' KSME International Journal, Vol. 13, No. 2, pp. 175-182