JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Dynamics Analysis of a Multi-beam System Undergoing Overall Rigid Body Motion Employing Finite Element Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Dynamics Analysis of a Multi-beam System Undergoing Overall Rigid Body Motion Employing Finite Element Method
Choe, Sin; Yu, Hong-Hui;
  PDF(new window)
 Abstract
Equations of motion of a multi-beam system undergoing overall rigid body motion are derived by employing finite element method. An orientation angle is employed to allow the arbitrary orientation o f the beam element. Modal coordinate reduction technique, which has been successfully utilized in the conventional linear modeling method, is employed for the present modeling method to reduce the computational effort. Different from the conventional linear modeling method, the present modeling method captures the motion-induced stiffness variations which are important for the dynamic analysis of structures undergoing overall rigid body motion. The numerical results are compared to those of a commercial program to verify the reliability of the present method.
 Keywords
Dynamic Analysis;Multi-beam;F.E.M.;Rigid Body Motion;Modal Analysis;Modal Coordinate Reduction;
 Language
Korean
 Cited by
 References
1.
Ho, J., 1977, 'Direct Path Method for Flexible Multibody Spacecraft Dynamics,' J. of Spacecraft and Rockets, Vol. 14, pp. 102-110

2.
Bodley, C., Devers, A., Park, A. and Frisch, H., 1978, 'A Digital Computer Program for the Dynamic Interaction Simulation of Controls and Structure,' Vol. 1&2, NASA TP-1219

3.
Christensen, E. and Lee, S., 1986, 'Nonlinear Finite Element Modeling of the Dynamics of Unrestrained Flexible Structures,' Computers an Structures,Vol. 23, pp. 816-829 crossref(new window)

4.
Simo, J. and Vu-Quoc, L., 1986, 'On the Dynamic of Flexible Beams under Large Overall Motions - the Plane Case : Part I and Part II,' Journal of Applied Mechanics, Vol. 53, pp. 849-863

5.
Kane, T., Ryan, R. and Banerjee, A., 1987, 'Dynamics of Cantilever Beam Attached to a Moving Base,' J. Guidance, Control, and Dynamics, Vol. 10, pp. 139-151

6.
Yoo, H.. Ryan, R. and Scott, R., 'Dynamics of Flexible Beams Undergoing Overall Motions,' Journal of Sound and Vibration,' Vol. 181, No. 2, pp. 261-278 crossref(new window)

7.
Ryu, J., et al., 1994, 'A General Approach to Stress Stiffening Effects on Flexible Multibody Dynamic Systems,' Mechanics of Structure and Machines, Vol. 22, No. 2, pp. 157-180 crossref(new window)

8.
Ryu. J.. et al., 1997, 'A Criterion in Inclusion of Stress Stiffening Effects in Flexible Multibody Dynamic System Simulation,' Computers and Structures, Vol. 62, No. 6, pp. 1035-1048 crossref(new window)

9.
Yoo, H. and Shin, S., 1998, 'Vibration Analysis of Rotating Cantilever Beams,' Journal of Sound and Vibration, Vol. 212, No. 5, pp. 807-828 crossref(new window)

10.
Daryl L. Logan., 1997, A First Course in the Finite Element Method using Algor, PWS Publishing company

11.
Leonard Meirovitch, 1967, Analysis Methods in Vibrations, Macmillan Publishing Co., Inc.