JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optimal Design of a High Speed Carbon Composite Air Spindle
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optimal Design of a High Speed Carbon Composite Air Spindle
Bang, Gyeong-Geun; Lee, Dae-Gil;
  PDF(new window)
 Abstract
For the stable operation of high speed air spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are net appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, a high speed spindle composed of carbon fiber epoxy composite shaft and steel flange was designed for maximum critical speed considering minimum static deflection and radial expansion due to bending load and centrifugal force during high speed relation. The stacking angle and the stacking thickness of the composite shaft and the adhesive bonding length of the 7teel flange were selected through vibrational analysis considering static and thermal loads due to temperature rise.
 Keywords
Air Spindle;Carbon Composite Shaft;Aerostatic Bearing;Optimal Design;Critical Speed;Static Deflection;Thermal Stability;
 Language
Korean
 Cited by
1.
고속 복합재료 공기 주축부를 위한 추력베어링 설계,방경근;이대길;

대한기계학회논문집A, 2002. vol.26. 10, pp.1997-2007 crossref(new window)
 References
1.
Weck, M. and Koch, A., 1993, 'Spindle-Bearing Systems for High-Speed Applications in Machine Tools,' Ann. CIRP, Vol. 42, pp. 445-448

2.
Hirn, G., 1854, 'Sur les Principaux Phenomenes qui Present les Frottementes Mediats,' Soc. Ind. Mulhouse Bull., Vol. 26, pp. 188-277

3.
Gross, W. A., 1962, 'Investigation of Whirl in Externally Pressurized Air-Lubricated Journal Bearing,' J. Basic. Eng. Trans. ASME, Vol. 84, pp. 132-138

4.
Larson, R. H. and Richardson, H. H., 1962, 'A Preliminary Study of Whirl Instability for Pressurized Gas Bearings,' J. Basic Eng. Trans. ASME, Vol. 84, pp. 511-520

5.
Taniguchi, O., 1967, 'Experimental Study on Instability of Externally Pressurized Gas Bearings,' JSME Int. J., Vol. 33, pp. 997-1004

6.
Blondeel, E., Snoeys, R. and Devrieze, L., 1980, 'Dynamic Stability of Externally Pressurized Gas Bearings,' J. Lub. Tech. Trans. ASME, Vol. 102, pp. 511-519

7.
최진경, 이대길, 1998, '베어링 스팬상에 기어구동축을 갖는 스핀들 베어링 시스템의 열특성에 관한 연구,' 대한기계학회논문집 A, 제22권, 제1호, pp. 33-43

8.
최진경, 이대길, 박규열, 1996, '베어링 스팬상에 기어구동축을 갖는 스핀들 베어링 시스템의 정적 및 동적 해석방법에 관한 연구,' 대한기계학회논문집 A, 제20권, 제5호, pp. 1477-1485

9.
이정배, 김경웅, 2000, '능동 제어되는 외부 가압 공기 베어링의 안정 특성에 관한 연구,' 대한기계학회논문집 A, 제24권, 제3호, pp. 543-549

10.
Lee, D. G., Sin, H. C. and Suh, N. P., 1985, 'Manufacturing of a Graphite Epoxy Composite Spindle for a Machine Tool,' Ann. CIRP, Vol. 34, pp. 365-369

11.
Choi, J. K. and Lee, D. G., 1997, 'Manufacture of a Carbon Fiber-Epoxy Composite Spindle-Bearing System for a Machine Tool,' Composite Structures, Vol. 37, pp. 241-251 crossref(new window)

12.
Lee, D. G. and Choi, J. K., 2000, 'Design and Manufacture of an Aerostatic Spindle Bearing System with Carbon Fiber-Epoxy Composites,' J. Composite Materials, Vol. 34, pp. 1150-1175 crossref(new window)

13.
Tsai, S. W. and Wu, E. M., 1971, 'A general theory of strength for anisotropic materials,' J. Composite Materials, Vol. 5, pp. 58-80 crossref(new window)