JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Development of Finite Element Ductile Tearing Simulation Model Considering Strain Rate Effect
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Development of Finite Element Ductile Tearing Simulation Model Considering Strain Rate Effect
Nam, Hyun Suk; Kim, Ji Soo; Kim, Jin Weon; Kim, Yun Jae;
  PDF(new window)
 Abstract
This paper proposes ductile failure simulation under high strain rate conditions using finite element (FE) analyses. In order to simulate a cracked component under a high strain rate condition, this paper applies the stress-modified fracture strain model combined with the Johnson/Cook model. The stress-modified fracture strain model determines the incremental damage in terms of stress triaxiality () and fracture strain () for a dimple fracture using the tensile test results. To validate the stress-modified fracture strain model under dynamic loading conditions, the parameters are calibrated using the tensile test results under various strain rates and the fracture toughness test results under quasi-static conditions. The calibrated damage model predicts the CT test results under a high strain rate. The simulated results were then compared with the experimental data.
 Keywords
Ductile Fracture;Finite Element Analysis;High Strain Rate Condition;Damage Simulation;
 Language
Korean
 Cited by
 References
1.
Scott, P., Olson, R., Bockbrader, J., Wilson, M., Gruen, B., Morbitzer, R., Yang, Y., Williams, C., Brust, F., Fredette, L., and Ghadiali, N., 2005, "The Battelle Integrity of Nuclear Piping (BINP) Program Final Report," NUREG/CR-6837, Vol.2.

2.
Solomos, G., Albertini, C., Labibes, K., Pizzinato, V., and Viaccoz, B., 2004, "Strain Rate Effects in Nuclear Steels at Room and Higher Temperatures," Nucl. Eng. & Design, Vol. 229, pp. 139-149. crossref(new window)

3.
Kim, J. W., Choi, M. R., 2015, "Effect of Loading Rate on the Deformation Behavior of SA508 Gr. 1a Low Alloy Steel and TP316 Stainless Steel Pipe Materials at RT and $^{\circ}C$," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 4, pp. 123-180.

4.
DeGrassi, G., Nie, J., and Hofmayer, C., 2008, "Seismic Analysis of Large-Scale Piping Systems for the JNES-NUPEC Ultimate Strength Piping Test Program," NUREG/CR-6983.

5.
American Society of Mechanical Engineer, ASME B&PV Code Sec.III, "Nuclear Components," 1998e

6.
American Society of Mechanical Engineer, ASME B&PV Code Sec.XI, "Rules for Inservice Inspection of Nuclear Power Plant Components," 1998ed.

7.
Tong, L.L., Duan, R., and Cao, X.W., 2015, "Seismic Analysis of RCS with Finite Element Model for Advanced PWR," Prog. Nucl. Energy, Vol. 79, pp. 142-149. crossref(new window)

8.
Pipe Fracture Encyclopedia, Volume 3: Pipe Fracture Test Data, Battelle, Columbus, 1997.

9.
Baird, J.D, 1971, "The Effects of Strain Aging due to Interstitial Solutes on the Mechanical Properties of Metals," Metall. Reviews, Vol.16, pp.1-18.

10.
Marschall, C.W., Mohan, R., Krishnaswamy, P., and Wilkowski, G., 1994, "Effect of Dynamic Strain Aging on the Strength and Toughness of Nuclear Ferritic Piping at LWR Temperatures," NUREG/CR-6226.

11.
McClintock, F. A., 1968, "A Criterion for Ductile Fracture by the Growth of Holes," Journal of Applied Mechanics Vol. 35, No. 2, pp. 363-371. crossref(new window)

12.
Rice, J. R and Tracey, D. M. 1969, "On the Ductile Enlargement of Voids in Triaxial Stress Fields," Journal of the Mechanics and Physics of Solids,Vol. 17, No.3, pp.201-217. crossref(new window)

13.
Hancock, J. W. and Mackenzie, A. C., 1976, "On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-Axial Stress-States," Journal of the Mechanics and Phsics of solids, Vol. 24, No. 2-3, pp. 147-160. crossref(new window)

14.
Kanvinde, A and Deierlein, G., 2006, "The Void Growth Model and the Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels," Journal of Structural Engineering, Vol. 132, No. 12, pp. 1907-1918. crossref(new window)

15.
Kim, J. H., Kim, N. H., Kim, Y. J., Hasegawa, K. and Miyazaki, K., 2013, "Ductile Fracture Simulation of 304 Stainless Steel Pipes with Two Circumferential Surface Cracks," Fatigue & Fracture of Engineering Materials & Structures, Vol. 36, No. 10, pp. 1067-1080. crossref(new window)

16.
Nam, H. S., Oh, Y. R., Kim, Y. J., Kim, J. S., Miura, Naoki, 2016, "Application of Engineering Ductile Tearing Simulation Method to CRIEPI Pipe Test," Engineering Fracture Mechanics., Vol. 153, pp. 128-142. crossref(new window)

17.
ABAQUS 6.13, Analysis User's Manual, Dassault Systemes Simulia Corp., Providence, RI, 2013.

18.
Johnson, G. R., Cook, W. H., 1985, "Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperature and Pressure," Engineering Fracture Mechanics., Vol. 21, pp. 31-48. crossref(new window)

19.
Oh, C. S., Kim, N. H., Kim, Y. J., Baek, J. H., Kim, Y. P. and Kim, W. S., 2011, "A Finite Element Ductile Failure Simulation Method Using Stress-Modified Fracture Strain Model," Engineering Fracture Mechanics Vol. 78, No. 1, pp. 124-137. crossref(new window)

20.
Kachanov LM, 1971, "Foundation of the Theory of Plasticity," North-Holland, Amsterdam.