Advanced SearchSearch Tips
A Parallel Kalman Filter for Estimation of Magnetic Disturbance and Orientation Based on Nine-axis Inertial/Magnetic Sensor Signals
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Parallel Kalman Filter for Estimation of Magnetic Disturbance and Orientation Based on Nine-axis Inertial/Magnetic Sensor Signals
Lee, Jung Keun;
  PDF(new window)
Magnetic disturbance is one of the main factors that deteriorate the accuracy of orientation estimation methods based on inertial/magnetic sensor signals. This paper proposes a parallel Kalman filter(KF) that explicitly detects magnetic disturbances and thus can accurately estimate 3D orientation in magnetically disturbed environments. Due to the parallel nature of the proposed KF, even severe magnetic disturbances only affect yaw estimation, while roll and pitch values remain accurate. Consequently, the proposed KF can be effectively used in various applications that involve magnetically inhomogeneous environments, such as robots, ships, and planes.
Parallel Kalman Filter;Magnetic Disturbance;Orientation;Inertial/Magnetic Sensor;
 Cited by
Sabatini, A. M., 2011, "Estimating Three- Dimensional Orientation of Human Body Parts by Inertial/Magnetic Sensing," Sensors, Vol. 11, No. 2, pp. 1489-1525. crossref(new window)

Kim, J. H., Yoon, H.-S., Moon, H., Choi, H. R. and Koo, J. C., 2015, "Application of a Sensor Fusion Algorithm for Improving Grasping Stability," J. Mech. Sci. Tech., Vol. 29, No. 7, pp. 2693-2698. crossref(new window)

Park, K. J. and Won, M., 2014, "People Tracking and Accompanying Algorithm for Mobile Robot Using Kinect Sensor and Extended Kalman Filter," Trans. Korean Soc. Mech. Eng. A, Vol. 38, No. 4, pp. 345-354. crossref(new window)

Sabatini, A. M., 2006, "Quaternion-based Extended Kalman Filter for Determining Orientation by Inertial and Magnetic Sensing," IEEE Trans. Biomed. Eng., Vol. 53, No. 7, pp. 1346-1356. crossref(new window)

Lee, J. K. and Park, E. J., 2009, "A Fast Quaternion-based Orientation Optimizer Via Virtual Rotation for Human Motion Tracking," IEEE Trans. Biomed. Eng., Vol. 56, No. 5, pp. 1574-1582. crossref(new window)

Bachmann, E. R., Yun, X. and Brumfield, A. 2007, "Limitations of Attitude Estimation Algorithms for Inertial/Magnetic Sensor Modules," IEEE Robot Autom. Mag., Vol. 14, pp. 76-87.

Roetenberg, D., Luinge, H. J., Baten, C. T. and Veltink, P. H., 2005, "Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation," IEEE Trans. Neural Syst. Rehab. Eng., Vol. 13, No. 3, pp. 395-405. crossref(new window)

Lee, J. K., "Kalman Filter for Estimation of Sensor Acceleration Using Six-axis Inertial Sensor," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 2, pp. 179-185.

Gozick, B., Subbu, K.P., Dantu, R. and Maeshiro, T., 2011, "Magnetic Maps for Indoor Navigation," IEEE Trans. Instrum. Meas. Vol. 60, pp. 3883-3891. crossref(new window)

Frassl, M. Angermann, M., Lichtenstern, M., Robertson, P., Julian, B. J. and Doniec, M. 2013, "Magnetic Maps of Indoor Environments for Precise Localization of Legged and Non-legged Locomotion," In Proceeding of Intelligent Robots and Systems (IROS), Tokyo, Japan, 3-7 Nov.

De Vries, W. H. K., Veegera, H. E. J., Baten, C. T. M. and van der Helma, F.C.T, 2009, "Magnetic Distortion in Motion Labs, Implications for Validating Inertial Magnetic Sensors," Gait Posture, Vol. 29, pp. 535- 541. crossref(new window)

Lee, J. K., Park, E. J. and Robinovitch, S. N., 2012, "Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions," IEEE Trans. Instrum. Meas., Vol. 61, No. 8, pp. 2262-2273. crossref(new window)

Yun, X., Bachmann, E. R. and McGhee, R. B., 2008, "A Simplified Quaternion-based Algorithm for Orientation Estimation from Earth Gravity and Magnetic Field Measurements," IEEE Trans. Instrum. Meas., Vol. 57, pp. 638-650. crossref(new window)