JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Finite element analysis of flow with moving free surface by volume of fluid method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Finite element analysis of flow with moving free surface by volume of fluid method
Sin, Su-Ho; Lee, U-Il;
  PDF(new window)
 Abstract
A numerical technique for simulating incompressible viscous flow with free surface is presented. The flow field is obtained by penalty finite element formulation. In this work, a modified volume of fluid (VOF) method which is compatible with 4-node element is proposed to track the moving free surface. This scheme can be applied to irregular mesh system, and can be easily extended to three dimensional geometries. Numerical analyses were done for two benchmark examples, namely the broken dam problem and the solitary wave propagation problem. The numerical results were in close agreement with the existing data. Illustrative examples were studied to show the effectiveness of the proposed numerical scheme.
 Keywords
Moving Free Surface;Volume of Fluid Method;Finite Element Method;Mold Filling;
 Language
Korean
 Cited by
1.
A Semi-Implicit Method for the Analysis of Two-Dimensional Fluid Flow with Moving Free Surfaces,;;;;

Journal of Mechanical Science and Technology, 2002. vol.16. 5, pp.720-731
2.
암시적 VOF법을 이용한 중력주조에서의 충전 및 응고과정에 대한 연구,임익태;김우승;

대한기계학회논문집B, 2000. vol.24. 1, pp.102-113 crossref(new window)
3.
VOF 수치해석을 통한 고절수형 위생도기 개발에 관한 연구,안일용;이영림;조우석;김진호;

한국생산제조학회지, 2012. vol.21. 6, pp.946-953 crossref(new window)
 References
1.
Appl. Mech. Rev., 1989. vol.42. pp.323-341

2.
Computational Methods for Free and Moving Boundary Problems in Heat and Fluid Flow, Elsevier, London, 1993. pp.287-316

3.
Int. J. Numer. Methods Fluids, 1987. vol.7. pp.1053-1075

4.
Comput. Methods Appl. Mech. Eng., 1988. vol.69. pp.277-324

5.
서울대학교 공학박사 학위논문, 1996.

6.
Phys. Fluids, 1965. vol.8. pp.2182-2189

7.
J. Comp. Phys., 1969. vol.4. pp.543-551

8.
J. Comp. Phys., 1970. vol.6. pp.68-94

9.
J. Comp. Phys., 1981. vol.39. pp.201-225

10.
Los Alamos Scientific Laboratory Report, LA-8355, 1980.

11.
Int. J. Numer. Methods Fluids, 1987. vol.7. pp.535-550

12.
AFS Trans., 1988. vol.96. pp.447-458

13.
Int. J. Numer. Methods Eng., 1990. vol.30. pp.821-831

14.
Int. J. Numer. Methods Eng., 1992. vol.35. pp.787-806

15.
Appl. Math. Modelling, 1994. vol.18. pp.101-108

16.
Ph. D. Theses, Purdue University, 1993.

17.
Int. J. Numer. Methods Fluids, 1995. vol.20. pp.493-506

18.
J. Comp. Phys., 1979. vol.30. pp.1-60

19.
The Finite Element Method in Heat Transfer and Fluid Dynamics, 1994.

20.
Finite Elements, 1986. vol.VI.

21.
Comput. Methods Appl. Mech. Eng., 1982. vol.32. pp.199-259

22.
Lecture Notes in Physics, 59, proc. Fifth Int. Conf. Numerical Methods in Fluid Dynamics, 1976. pp.330-340

23.
Numerical Methods for Fluid Dynamics, 1982. pp.273-285

24.
J. Comp. Phys., 1991. vol.93. pp.449-468

25.
Int. J. Numer. Methods Fluids, 1995. vol.20. pp.1337-1361

26.
Int. J. Numer. Methods Fluids, 1995. vol.20. pp.1363-1380

27.
대한기계학회 95년도 추계학술대회 논문집(I), 1995. pp.903-908

28.
Int. J. Numer. Methods Fluids, 1994. vol.18. pp.669-694

29.
Philos. Trans., Ser. A., Math. Phys. Sci., 1952. vol.244. pp.312-324

30.
J. Fluid Mech., 1960. vol.9. pp.430-444

31.
J. Fluid Mech., 1971. vol.49. pp.625-633

32.
J. Fluid Mech., 1976. vol.76. pp.177-185

33.
CFD J., 1996. vol.5. pp.71-88