JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Heat transfer coefficient measurement by a jet impinging on a rib-roughened convex surface
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Heat transfer coefficient measurement by a jet impinging on a rib-roughened convex surface
Jeong, Yeong-Seok; Lee, Dae-Hui; Lee, Jun-Sik;
  PDF(new window)
 Abstract
The local Nusselt numbers have been measured for a round turbulent jet impinging on the convex surface with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured to within .+-.0.25 deg. C accuracy using liquid crystal and a digital color image processing system. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 6 to 10, the dimensionless surface curvature (d/D) 0.056, and the various rib types (height(d) from 1 to 2 mm, pitch (p) from 6 to 32 mm). It was found that the average Nusselt numbers on the convex surface with rib are higher than those without rib, mainly due to an increase in the turbulent intensity caused by flow separation, recirculation and reattachment on the wall surface. In addition, we compared the results by the steady-state method using the gold-film Intrex with those by the transient method.
 Keywords
Impinging Jet;Liquid Crystal/Transient Method;Digital Color Image Processing System;RibRoughened Convex Surface;
 Language
Korean
 Cited by
1.
충돌제트계에서 사다리형 로드 배열에 의한 열전달 및 유동특성,금성민;

설비공학논문집, 2001. vol.13. 9, pp.904-913
2.
완전 발달된 원형 충돌제트의 노즐 직경이 열전달에 미치는 영향,이대희;원세열;이영민;조헌노;

대한기계학회논문집B, 2000. vol.24. 4, pp.519-525 crossref(new window)
3.
충돌제트를 이용한 Pedestal 형상의 칩 냉각연구,이대희;이준식;정영석;정승훈;

대한기계학회논문집B, 2003. vol.27. 1, pp.1-8 crossref(new window)
4.
초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 요철이 설치된 유출면에서의 열/물질전달 특성,이동호;남용우;조형희;

대한기계학회논문집B, 2004. vol.28. 3, pp.338-348 crossref(new window)
5.
반 실린더형 홈을 가진 벤틸레이티드 디스크 브레이크에서의 국소열전달 측정 및 수치 해석,이대희;박성봉;임창율;김흥섭;이관수;

대한기계학회논문집B, 2006. vol.30. 6, pp.587-593 crossref(new window)
 References
1.
Advances in Heat Transfer, 1977. vol.13. pp.1-60

2.
ASME Paper No. 87-H-35, 1987.

3.
Experimental Thermal and Fluid Science, 1993. vol.6. pp.11-134

4.
Experimental Heat Transfer, 1994. vol.7. pp.121-141

5.
Journal of Flow Visualization Soc. Jpn., 1984. vol.4. pp.223-228

6.
International Journal of Heat and mass Transfer, 1984. vol.27. 11, pp.2145-2154

7.
Journal of Aircraft, 1969. vol.6. pp.203-208

8.
Journal of Fluid Mechanics, 1968. vol.33. pp.283-292

9.
Proceedings of 7th International Heat Transfer Conference, 1982. vol.31. pp.357-362

10.
ASME Journal of Heat Transfer, 1991. vol.113. pp.858-864

11.
International Journal of Heat and mass Transfer, 1977. vol.20. pp.1333-1338

12.
ASME Journal of Heat Transfer, 1988. vol.110. pp.84-90

13.
Ph. D. Dissertation, University of California, Davis, 1993.

14.
Proc. of 3rd Asian Symp. on Visualization, ASV '94, E42, 1994. pp.569-574

15.
ASME Journal of Heat Transfer, 1995. vol.117. pp.772-776

16.
International Journal of Heat and mass Transfer, 1994. vol.37. pp.967-976

17.
대한기계학회 추계학술대회, 1996. pp.503-507

18.
D. Phil. Thesis, Oxford University, 1983.

19.
Mechanical Engineering, 1953. vol.75. pp.3-8

20.
International Journal of Heat and Fluid Flow, 1997. vol.18. 1, pp.160-169

21.
Industrial and Engineering Chemistry Fundamentals, 1977. vol.16. pp.21-28

22.
Journal of Chemical Engineering-Japan, 1987. vol.20. pp.71-76

23.
Internation Journal of Heat and Mass Transfer, 1971. vol.14. pp.601-617

24.
인하대학교 박사학위논문, 1987.