A Non-linear Low-Reynolds-Number Heat Transfer Model for Turbulent Separated and Reattaching Flows

- Journal title : Transactions of the Korean Society of Mechanical Engineers B
- Volume 24, Issue 2, 2000, pp.316-323
- Publisher : The Korean Society of Mechanical Engineers
- DOI : 10.22634/KSME-B.2000.24.2.316

Title & Authors

A Non-linear Low-Reynolds-Number Heat Transfer Model for Turbulent Separated and Reattaching Flows

Rhee, Gwang-Hoon; Sung, Hyung-Jin;

Rhee, Gwang-Hoon; Sung, Hyung-Jin;

Abstract

A nonlinear low-Reynolds-number heat transfer model is developed to predict turbulent flow and heat transfer in separated and reattaching flows. The model of Park and Sung (1997) is extended to a nonlinear formulation, based on the nonlinear model of Gatski and Speziale (1993). The limiting near-wall behavior is resolved by solving the elliptic relaxation equation. An improved explicit algebraic heat transfer model is proposed, which is achieved by applying a matrix inversion. The scalar heat fluxes are not aligned with the mean temperature gradients in separated and reattaching flows; a full diffusivity tensor model is required. The near-wall asymptotic behavior is incorporated into the function in conjunction with the elliptic relaxation equation. Predictions of the present model are cross-checked with existing measurements and DNS data. The model preformance is shown to be satisfactory.

Keywords

Nonlinear Low-Reynolds-Number;Heat Transfer Model;Turbulence Model;

Language

Korean

Cited by

References

1.

Park, T.S. and Sung, H.J., 1997, 'A New Low-Reynolds-Number $k-{\varepsilon}-f_{\mu}$ model for Predictions Involving Multiple Surface,' Fluid Dynamics Research, Vol. 20, p 97

2.

Goldberg, U.C., 1994, 'Toward a Pointwise Turbulence Model for Wall-Bounded and Free Shear Flows,' J. Fluids Eng., Vol. 116, p. 72

3.

Cotton, M.A. and Ismael, J.O., 1994, 'A 3-Equation Transported Strain Parameter Model of Turbulence and Its Application to Turbulent Mixed Convection,' Int. Symp. Turbulence, Heat and Mass Transfer, Lisbon, Protugal

4.

Durbin, P.A., Mansor, N.N. and Yang, Z., 1994, 'Eddy Viscosity Transport Model for Turbulent Flow,' Phys. Fluids, Vol. 6, No. 2, p. 1007

5.

Gatski, T.B. and Speziale, C.G., 1993, 'On Explicit Algebraic Stress Models for Complex Turbulent Flows,' J. Fluid Mech., Vol. 254, p. 59

6.

T. J. Craft, B. E. Launder, and K. Sugar, 'Development and application of a cubic eddy-viscosity model of turbulence,' Int. J. Heat and Fluid Flow, 17, 108-115 (1996)

7.

Craft, T.J., Launder, B.E. and Suga, K., 1995, 'A Non-linear Eddy Viscosity Model Including Sensitivity to Stress Anisotropy,' The 10th Symp. on Turbulent Shear Flow, Paper No. 23-4, The Penn. State Univ.

8.

Shih, T.H., Zhu, J. and Lumley, J.L., 1993, 'A Realizable Reynolds Stress Algebraic Equation Model,' ICOMP Report 92-97, NASA Tech. Memo. 105993

9.

Rubinstein, R. and Barton, J.M., 1990, 'Nonlinear Reynolds Stress Models and The Renormalization Group,' Phys. Fluids A, Vol. 2, p. 1472

10.

Speziale, C.G., 1998, 'A Consistency Condition for Non-linear Algebraic Reynolds Stress Models in Turbulence,' Int. J. Non-Linear Mech., Vol. 33, No. 4, p. 579

11.

Antonia, R.A., 1980, 'Behavior of the Turbulent Prandtl Number Near the Wall,' Int. J. Heat Mass Transfer, Vol. 23, p. 906

12.

Youssef, M.S., Nagano, Y. and Tagawa, M., 1992, 'A Two-Equation Heat Transfer Model for Predicting Turbulent Thermal Fields Under Arbitrary Wall Thermal Conditions,' Int. J. Heat Mass Transfer, Vol. 35, p. 3095

13.

Hattori, H., Nagano, Y. and Tagawa, M., 1993, 'Analysis of Turbulent Heat Transfer Under Various Thermal Conditions with Two-Equation Models,' Engineering Turbulence Modeling and Experiments, Vol. 2, p. 43

14.

Rhee, G.H. and Sung, H.J., 1996, 'A Nonlinear Low-Reynolds-Number $k-{\varepsilon}$ Model for Turbulent Separated and Reattaching Flows - II. Thermal Field Computations,' Int. J. Heat Mass Transfer, Vol. 39, p. 3465

15.

Rhee, G.H. and Sung, H.J., 1997, 'A Low-Reynolds-Number, Four-Equation Heat Transfer Model for Turbulent Separated and Reattaching Flows,' Int. J. Heat Fluid FLow, Vol. 18, p. 38

16.

이광훈, 성형진, 1995, '난류 박리 및 재부착 유동을 위한 저레이놀즈수 4-방정식 난류 모형의 개발,' 대한기계학회논문집, 제19권, 제8호, p. 2039

17.

Rogers, M.M., Mansour, N.N. and Reynolds, W.C., 1989, 'An Algebraic Model for the Turbulent Flux of a Passive Scalar,' J. Fluid Mech., Vol. 203, p. 77

18.

Kasagi, N., Tomita, Y. and Kuroda, A., 1992, 'Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow,' ASME J. Heat Mass Transfer, Vol. 114, p. 598

19.

Vogel, J.C. and Eaton, J.K., 1985, 'Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward -Facing Step,' ASME J. Heat Mass Transfer, Vol. 107, p. 922

20.

Durbin, P.A. and Laurence, D., 1996, 'Nonlocal Effects in Single Point Closure,' 3rd Advances in Turbulence Research Conference, Korea Univ., Korea, p. 109

21.

Speziale, C.G., Sarkar, S. and Gatski, T.B., 1991, 'Modeling the Pressure-Strain Correlation of Turbulence: an Invariant Dynamical Systems Approach,' J. Fluid Mech., Vol. 227, p. 245

22.

Gibson, M.M. and Launder, B.E., 1976, 'On the Calculation of Horizontal, Turbulent, Free Shear Flows Under Gravitaional Influence,' ASME J. Heat Transfer, Vol. 114, p. 598

23.

Gibson, M. M., and Launder, B. E., 1978, 'Ground Effects on Pressure Fructuations in the Atmospheric Boundary Layer,' Journal of Fluid Mechanics, Vol. 86, pp. 491-511

24.

Vogel, J.C. and Eaton, J.K., 1985, 'Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step,' ASME J. Heat Transfer, Vol. 107, p. 922