Advanced SearchSearch Tips
An Analytical Slip Factor Based on a Relative Eddy Size Model for Centrifugal Impellers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
An Analytical Slip Factor Based on a Relative Eddy Size Model for Centrifugal Impellers
Paeng, Kee-Seok; Chung, Myung-Kyoon;
  PDF(new window)
By calculating the location and size of the relative eddy formed in the rotating impellers with the logarithmic spiral vanes, a new simple but accurate slip factor is analytically derived. The proposed slip factor depends on only one parameter that is a function of the number of vanes and the vane exit angle. Predicted slip factor for various cases are compared with those estimated by a number of previous slip factors as well as a recent theoretical calculation by Visser et al. ( JFM, Vol. 268, pp. 107-141, 1994). It is found that the present slip factor yields almost similar results to Wiesner's which has been empirically formulated based on the theoretical calculation of Busemann.
Centrifugal Impeller;Slip;Slip Factor;Relative Eddy;Logarithmic Spiral Vane;Compressor;Radial Straight Vane;Backward Vane;
 Cited by
탈설계 조건에서 원심압축기의 미끄럼 계수 모델들의 평가,윤성호;백제현;

대한기계학회논문집B, 2001. vol.25. 11, pp.1459-1466 crossref(new window)
Kucharski, W., 1918, Stromungen einer Rei-bungsfreien Flussigkeit bei Rotation Fester Korper, R. Oldenbourg

Stodola, A, 1927, Steam and Gas Turbines, Vols I and II, McGraw-Hill, New York

Busemann, A., 1928, 'Das ForderhohenverHaltnis Radialer Kreiselpumpen mit LogarithmischSpiraligen Schaufen,' Z. Angew. Math. Mech. Vol. 8, pp. 372-384 crossref(new window)

Wislicenus, G. F., 1947, Fluid Mechanics of Turbomachinery, McGraw-Hill, New York

Stanitz, J. D. 1952, 'Some Theoretical Aerodynamic Investigations of Impellers in Radial-and Mixed Flow Centrifugal Compressors,' Trans. ASME, Vol. 74, pp. 473-497

Sheets, H. E.,1950, 'The Flow Through Centrifugal Compressors and Pumps,' Trans. ASME, Vol. 72, pp. 1009-1015

Peck, J. F., 1951. 'Investigation Concerning Flow Conditions in a Centrifugal Pump and the Effect of Blade Loading on Head Slip,' Proceedings, lME, Vol. 164, p. 1

Wosika, L. R., 1952, 'Radial-Flow Compressors and Turbines for the Simple Small Gas Turbine,' Trans. ASME, Vol. 74, pp. 1337-1347

Stahler, Alfred F., 1965. 'The Slip Factor of a Radial Bladed Centrifugal Compressor,' Trans. ASME, Vol. 87, pp. 181-192

Wiesner, F. J. 1967, 'A Review of Slip Factors for Centrifugal Impellers,' Journal of Engineering for power, Trans. ASME, Series A, Vol. 89, pp. 558-572

Visser, F. C., Brouwers, J. J. H., Badie, R., 1994, 'Theoretical Analysis of Inertially Irrotational and Solenoidal Flow in Two-Dimensional Radial-Flow Pump and Turbine Impellers with Equiangular Blades,' J. Fluid Mech, Vol. 268, pp. 107-141 crossref(new window)

Van den Braembussche R., 1985, 'Design and Optimization of Centrifugal Compressors.' In Deer A S, Stow P, Hirsh C. L. (eds), Thermodynamics and Fluid Mechanics of Turbomachinery, Martinus Nijhoff

Rodgers, C., 1978, 'A Diffusion Factor Correlation for Centrifugal Impeller Stalling,' ASME paper 78-GT-61

Ferguson, T. B., 1963, The Centrifugal Compressor Stage, Butterworth, London