JOURNAL BROWSE
Search
Advanced SearchSearch Tips
An Experimental Approach to Evaluate the Desulfurization Yield in Spray Drying Sorber
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
An Experimental Approach to Evaluate the Desulfurization Yield in Spray Drying Sorber
Yang, Hyun-Mo; Kim, Sang-Soo;
  PDF(new window)
 Abstract
A pilot-scale Spray Drying Sorber (SDS) system was set up to evaluate the effect of spray characteristics on the desulfurization yield. The size distribution and the Sauter Mean Diameters of slurry droplets were measured in advance using the optical size measurement system, Malvern 2600. The desulfurization yield of the drying chamber by size was measured for the conditions of inlet gas and spray injection. As a reagent, 10% limestone slurry of was treated with flue gas containing , and the combustion gas analyzer and gas detectors were attached to measure the concentration. With a flow rate of 144 Nm3/h and a temperature range of , the experiments were performed for the Stoichiometric Ratio (SR) of 1.0 to 3.0 and droplet mean diameter of 6.5 to . In case of smaller spray droplets, the desulfurization efficiency improved due to the increase of total droplet surface area, while the reduction in evaporation time reduced the contact time between the droplets and gas. In some typical region of droplet diameter, this negative effect, reduction of contact time, became dominant and the desulfurization yield decreases the desulfurization yield in spite of the expansion in absorption area. These results revealed that there exists the optimal size of spray droplets for a given state, which is determined by the compromise between the total surface area of slurry droplets and the evaporation time of droplets. The measurements also indicated that the inlet temperature of flue gas changes the optimal injection condition by varying the driving force for evaporation. The results confirm that the effect of the evaporation time of slurry droplets should be considered in analyzing the desulfurization yield as well as the total surface area, for it is a significant aspect of the correlation with the capabilities of absorption in wet droplets. In conclusion, the optimal condition of spray can be determined based on these results, which might be applied to design or scale-up of SDS system.
 Keywords
Droplet Size Distribution;Stoichiometric Ratio;Sauter Mean Diameter; Removal Efficiency;
 Language
Korean
 Cited by
1.
습식 다층 다단 다공성 플레이트 시스템의 집진특성,여석준;김주연;

한국동력기계공학회지, 2014. vol.18. 3, pp.42-50 crossref(new window)
 References
1.
Miller, M. J., 1986, Retrofit $SO_2$ and $NO_x$ Control Technologies for Coal-Fired Power Plants,' Environ. Prog., Vol. 5, No.3, p. 171-177 crossref(new window)

2.
Keener, T. C., and Keener, S. U., 1986, 'Current Status of Flue Gas Desulfurization in the United States,' Presented at the ASCE Environmental Engineering Division National Conference

3.
Peterson, Tom and Karlsson, Hans T., 1988, 'The Significance of Fly Ash in Wet-Dry Scrubbing of $SO_2$' Chem. Eng. Technol., Vol. 11, p. 298-305 crossref(new window)

4.
Martinez, C. J., Izquierdo, F. J., Cunill, E, Tejero, J., and Querol, J., 1991, 'Reactivation of Fly Ash and $Ca(OH)_2$ Mixtures for $SO_2$ Removal of Flue Gas,' Ind. Eng. Chem. Res, Vol. 30, p. 2143-2147 crossref(new window)

5.
Jorgensen, C., Chang, J. C. S., and Brna, T. G., 1987, 'Evaluation of Sorbents and Additives for Dry $SO_2$ Removal,' Environ. Prog., Vol. 6, No.1, p. 26-32 crossref(new window)

6.
Ho, C. H. and Shih, S. M., 1992, '$Ca(OH)_2$/lFly Ash Srobents for $SO_2$ Removal,' Ind. Eng. Chem. Res., Vol. 31, No.4,p.1120-1135 crossref(new window)

7.
Sanders, John E, Keener, Tim C., and Wang Jun., 1995, 'Heated Fly AshlHydrated Lime Slurries for $SO_2$ Removal in Spray Dryer Absorbers,' Ind. Eng. Chem. Res., Vol. 34, p. 302-307 crossref(new window)

8.
Ollero, P., Salvador, L., and Canadas, L., 1997, 'An Experimental Study of Flue Gas Desulfurization in a Pilot Spray Dryer,' Environ. Prog., Vol. 16, No.1, p. 20-28 crossref(new window)

9.
Brogren, C. and Karlsson, H. T., 1997, 'Modeling the Absorption of $SO_2$ in a Spray Scrubber Using the Penetration Theory,' Chem. Eng. Sci., Vol. 52, No. 18, p. 3085-3099 crossref(new window)

10.
Kieviet, F. G., and Kerkhof, P. J. A. M., 1997, 'Air Flow, Temperature and Humidity Patterns in a Cocurrent Spray Dryer: Modeling and Measurements,' Drying Technology, Vol. 15, No. 6-8, p. 1763-1773 crossref(new window)

11.
Masters, K., 1985, 'Spray Drying Handbook,' 4th ed., Pitman Press, London

12.
Yang, H. M. and Kim, S. S., 1997, 'Modeling Behaviors of Gas and Droplets in Spray Dryer,' presented at the 16th Annual Conference of the American Association for Aerosol Research, 5PM6, p.142

13.
Yang, H. M. and Kim, S. S., 1999, 'Modeling Desulfurization Performance of Spray Drying Sober using CFD,' presented at the 18th Annual Conference of the American Association for Aerosol Research

14.
Maurin, P. G., and Peters, M. J., 1983, 'Two-Fluid Nozzle vs. Rotary Atomization for Dry-Scrubbing Systems,' CEP, p. 51-59

15.
Son, S. Y. and Kihm, K. D., 1998, 'Effect of Coal Particle Size on Coal- Water Slurry (CWS) Atomization,' Atomization and Sprays, Vol. 8, p. 503-519