JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Application of the Krylov Subspace Method to the Incompressible Navier-Stokes Equations
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Application of the Krylov Subspace Method to the Incompressible Navier-Stokes Equations
Maeng, Joo-Sung; Choi, IL-Kon; Lim, Youn-Woo;
  PDF(new window)
 Abstract
The preconditioned Krylov subspace methods were applied to the incompressible Navier-Stoke's equations for convergence acceleration. Three of the Krylov subspace methods combined with the five of the preconditioners were tested to solve the lid-driven cavity flow problem. The MILU preconditioned CG method showed very fast and stable convergency. The combination of GMRES/MILU-CG solver for momentum and pressure correction equations was found less dependency on the number of the grid points among them. A guide line for stopping inner iterations for each equation is offered.
 Keywords
Krylov Subspace;Driven-Cavity;Preconditioner;SIMPLE;Convergence Acceleration;
 Language
Korean
 Cited by
 References
1.
Brandt, A., 1977, 'Multi-Level Adaptive Solutions to Boundary Value Problems,' Math., Vol. 31, pp. 333-390 crossref(new window)

2.
Choi, I. K., Maeng, J. S., and Yoon, J. Y., 1998, 'Convergence Behavior of a Full- Multigrid SIMPLE Algorithm, ' Proc. of 4th KSME-JSME Fluids Eng. Conf., pp. 281-284

3.
LiIek, Z. and Muzaferiza, S., and Peric, M., 1997, 'Efficiency and Accuracy Aspects of a Full-Multigrid SIMPLE Algorithm for Three-Dimensional Flows,' Numerical Heat Transfer, Part B, Vol. 31, pp. 23-42 crossref(new window)

4.
Hestenes, M. R. and Stiefel, E., 1952, 'Method of Conjugate Gradients for Solving Linear Systems,' Nat'l Bur. Standards J. Rev., Vol. 49, pp. 409-436

5.
Sonnevelt, P., 1989, 'CGS: A Fast Lanczos-type Solver for Nonsymmetric Linear Systems,' SIAM J. Sci. Statist. Comput., Vol. 10, pp. 36-52 crossref(new window)

6.
Fletcher, R., 1976, 'Conjugate Gradient Methods for Indefinite Systems,' Lecture Notes Math., Vol. 506, pp. 73-89., Springer-Verlag, Berlin-Heidelberg-New York crossref(new window)

7.
van der Vorst, H. A., 1992, 'BiCGSTAB: A Fast and Smoothly Converging Variant of BiCG for the Solution of Non-systemmetric Linear Systems,' SIAM J. Sci. Stat. Comput., Vol. 12, pp. 631-644 crossref(new window)

8.
Saad, Y. and Schultz, M. H., 1986, 'A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems,' SIAM J. Sci. Stat. Comput., Vol. 7, No. 7, pp. 856-869 crossref(new window)

9.
Lin, H. W. and Chen, L. D., 1996, 'Application of the Krylov Subspace Method to Numerical Heat Transfer,' Numerical Heat Transfer, Part A, Vol. 30, pp. 249-270 crossref(new window)

10.
Sheen, S. C. and Wu, J. L., 1997, 'Solution of the Pressure Correction Equation by the Preconditioned Conjugate Gradient Method,' Numerical Heat Transfer, Part B, Vol. 32, pp. 215-230 crossref(new window)

11.
Kim, C. J. and Ro, S. T., 1995, Efficient and Robust Matrix Solver for the Pressure Correction Equation in Two- and Three- Dimensional Fluid Flow Problems,' Numerical Heat Transfer, Part B, Vol. 27, pp. 355-369 crossref(new window)

12.
Tanyi, B. A. and Thatcher, R. W., 1996, 'Iterative Solution of the Incompressible Navier-Stokes Equations on the Meiko Computing Surfaces,' Intl. J. for Numerical Methods in Fluids, Vol. 22, pp. 220-240 crossref(new window)

13.
Vuik, C., 1996, 'Fast Iterative Solvers for the Discretized Incompressible Navier-Stokes Equations,' Intl. J. for Numerical Methods in Fluids, Vol. 22, pp. 195-210 crossref(new window)

14.
Noll, B. and Wittig, S., 1991, 'Generalized Conjugate Gradient Method for the Three Dimensional Fluid Flow Problems,' Numerical Heat Transfer, Vol. 20, Part B, pp. 207-221

15.
맹주성, 최일곤, 임연우, 1999, '비압축성 Navier-Stokes 방정식의 수렴 가속을 위한 예조건화 Krylov 부공간법과 다중 격자법의 결합,' 한국 전산유체공학회 1999년도 춘계학술대회 논문집, pp. 106-112

16.
Patankar, S. V. and Spalding, D. B., 1980, Numerical Heat and Fluid Flow, Hemisphere, New York

17.
Rhie. C. M. and Chow, W. L., 1983, 'A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation,' AIAA J., Vol. 21, pp. 1525-1532

18.
Van-Leer, B., 1979, 'Towards the Ultimate Conservative Difference Scheme; A Second- order Sequel to Gudnov's Method,' J. Comp. Phys., Vol. 32, pp. 101-136 crossref(new window)