JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Computations of the Supersonic Ejector Flows with the Second Throat
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Computations of the Supersonic Ejector Flows with the Second Throat
Choi, Bo-Gyu; Lee, Young-Ki; Kim, Heuy-Dong; Kim, Duck-Jool;
  PDF(new window)
 Abstract
Pumping action in ejector systems is generally achieved through the mixing of a high-velocity and high-energy stream with a lower-velocity and lower-energy stream within a duct. The design and performance evaluation of the ejector systems has developed as a combination of scale-model experiments, empiricism and theoretical analyses applicable only to very simplified configurations, because of the generic complexity of the flow phenomena. In order to predict the detailed performance characteristics of such systems, the flow phenomena throughout the operating regimes of the ejector system should be fully understood. This paper presents the computational results for the two-dimensional supersonic ejector system with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-averaged Navier-Stokes equation in a domain that extends from the stagnation chamber to the diffuser exit. For a wide range of the operating pressure ratio the flow field inside the ejector system is investigated in detail. The results show that the supersonic ejector systems have an optimal throat area for the operating pressure ratio to be minimized.
 Keywords
Compressible Flow;Supersonic Ejector;Supersonic Nozzle;Shock Wave;Internal Flow;Supersonic Diffuser;Second Throat;
 Language
Korean
 Cited by
1.
추기 펌프형 아음속/음속 이젝터유동에 관한 수치해석적 연구,최보규;구병수;김희동;김덕줄;

대한기계학회논문집B, 2001. vol.25. 2, pp.269-276 crossref(new window)
2.
가변형 음속/초음속 이젝터 시스템에 관한 실험적 연구,이준희;김희동;

대한기계학회논문집B, 2005. vol.29. 5, pp.554-560 crossref(new window)
 References
1.
Keenan, J. H., Neumann, E. P. and Lustwerk, F., 1950, 'An Investigation of Ejector Design by Analysis and Experiment,' Journal of Applied Mechanics, Vol. 17, No.3. pp. 299-309

2.
Fabri, J. and Siestrunck, R., 1958, 'Supersonic Air Ejectors,' Advances in Applied Mechanics, New York, N. Y., Academic Press, Vol. 5, pp. 1-34

3.
Alperin, M. and Wu, J. J., 1983, 'Thrust Augmenting Ejectors, Part 2,' AIAA Jour., Vol. 21, No. 12, pp. 1698-1706

4.
Yang, T. T., Ntone, F., Jiang. T. and Pitts, D. R., 1985, 'An Investigation of High Performance, Short Thrust Augmenting Ejectors,' Jour. Fluids Eng., Vol. 107, pp. 23-30

5.
Liu, C. F. and Chen, F., 1992, 'Analysis of Performance of The Second-Throat Ejector-Diffuser,' Jour. Chinese Soc. Mech. Engr., Vol. 13, No. 5 pp. 478-482

6.
Chen, F., Liu, C. F. and Yang, J. Y., 1994, 'Supersonic Flow in the Second-Throat Ejector-Diffuser System,' Jour. Spacecraft and Rockets, Vol. 31, No. 1, pp. 123-129

7.
Wang, J. J. and Chen, F, 1996, 'On the Start Condition of a Second-Throat Ejector- Diffuser,' Aeronautical Jour., Paper No. 2168, pp. 321-326

8.
Tillman, T. G. and Presz Jr., W. M., 1995, 'Thrust Characteristics of a Supersonic Mixer Ejector,' Jour. Propulsion and Powers, Vol. 11, No.5, pp. 931 -937

9.
Kumar, R. R. and Kurian, J., 1995, 'Estimation of Mixing of High-Speed Streams,' Jour. Propulsion and Powers, Vol. 12, No.2, pp. 429-431

10.
Presz Jr., W., Blinn, R. F. and Morin, B., 1987, 'Short Efficient Ejector Systems,' AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conf., San Diego, California

11.
Dutton, J. C. and Carroll, B. F., 1988, 'Limitation of Ejector Performance Due to Exit Choking,' Jour. Fluids Eng., Vol. 110, pp. 91-93

12.
Addy, A. L., Dutton, J. C. and Mikkelsen, C. D., 1981, 'Supersonic Ejector-Diffuser Theory and Experiments,' Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana, Report No. UILU-ENG-82-4001

13.
Nicholas, T. M. T., Narayanan, A. K. and Muthunayagam, A. E., 1995, 'Mixing Pressure-Rise Parameter for Effect of Nozzle Geometry in Diffuser-Ejectors,' Jour. Propulsion and Powers, Vol. 12, No.2, pp. 431-433

14.
Matsuo, K., Sasaguchi, K., Tasaki, K. and Mochizuki, H., 1981, 'Investigation of Supersonic Air Ejectors, Part 1. Performance in the Case of Zero-Secondary Flow,' Bulletin of the JSME, Series B, Vol. 24, No. 198, pp. 2090-2097

15.
Matsuo, K., Sasaguchi, K., Tasaki, K. and Mochizuki, H., 1982, 'Investigation of Supersonic Air Ejectors, Part 2. Effects of Throat-Area- Ratio on Ejector Performance,' Bulletin of the JSME, Series B, Vol. 25, No. 210, pp. 1898-1905

16.
Hoffmann. K. A. and Chiang, S. T., 1993, 'Computational Fluid Dynamics for Engineers,' Engineering Education System, Vol. II, Chap. 17

17.
Matsuo, K. and Kim, H. D., 1999 'Shock Train and Pseudo-Shock Phenamena in Internal Gas Flows.' Progress in Aerospace Sciences, Vol. 35, No.1, pp. 33-100 crossref(new window)

18.
Kim, H. D., Setoguchi, T, Yu, S, and Raghunathan, R., 1999, 'Two-Dimensional Computations of the Sonic/Supersonic Ejector Flows.' 4TH Intl. Symposium on Experimental and Computational Aerothermodynamic of Internal Flows, Germany, pp. 1-10

19.
Kim, H. D., Lee, Y. K., Setoguchi, T. and Yu, S., 2000, 'Numerical Simulation of the Supersonic Flows in the Second Throat Ejector-Diffuser Systems.' Jour. of Thermal Science, Vol. 8, No.4, pp. 215-222

20.
Kim, H. D., Setoguchi, T., Yu, S., and Raghunathan, S., 1999, 'Navier-Stokes Computations of the Supersonic Ejector-Diffuser System with a second Throat.' Jour. of Thermal Science, Vol. 8, No.2, pp. 79-88