Effects of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows

- Journal title : Transactions of the Korean Society of Mechanical Engineers B
- Volume 24, Issue 9, 2000, pp.1227-1238
- Publisher : The Korean Society of Mechanical Engineers
- DOI : 10.22634/KSME-B.2000.24.9.1227

Title & Authors

Effects of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows

Min, Tae-Gee; Yoo, Jung-Yul; Choi, Hae-Cheon;

Min, Tae-Gee; Yoo, Jung-Yul; Choi, Hae-Cheon;

Abstract

This study examines the effects of the discretization schemes on numerical solutions of viscoelastic fluid flows. For this purpose, a temporally evolving mixing layer, a two-dimensional vortex pair interacting with a wall, and a turbulent channel flow are selected as the test cases. We adopt a fourth-order compact scheme (COM4) for polymeric stress derivatives in the momentum equations. For convective derivatives in the constitutive equations, the first-order upwind difference scheme (UD) and artificial diffusion scheme (AD), which are commonly used in the literature, show most stable and smooth solutions even for highly extensional flows. However, the stress fields are smeared too much and the flow fields are quite different from those obtained by higher-order upwind difference schemes for the same flow parameters. Among higher-order upwind difference schemes, a third-order compact upwind difference scheme (CUD3) shows most stable and accurate solutions. Therefore, a combination of CUD3 for the convective derivatives in the constitutive equations and COM4 for the polymeric stress derivatives in the momentum equations is recommended to be used for numerical simulation of highly extensional flows.

Keywords

Viscoelastic Fluid Flow;Extensional Flow;Numerical Breakdown;Compact Upwind Difference Scheme;

Language

Korean

Cited by

References

1.

Caswell, B., 1996, 'Report on the IXth International Workshop on Numerical Methods in Non-Newtonian Flows,' J. Non-Newtonian Fluid Mech., Vol. 62, pp. 99-110

2.

Mompean, G. and Deville, M., 1997, 'Unsteady Finite Volume Simulation of Oldroyd-B Fluid Through a Three - Dimensional Planar Contraction,' J. Non-Newtonian Fluid Mech., Vol. 72, pp. 253-279

3.

Xue, S. -C., Phan- Thien, N. and Tanner, R. I., 1998, 'Three Dimensional Numerical Simulations of Viscoelastic Flows Through Planar Contraction,' J. Non-Newtonian Fluid Mech., Vol. 74, pp. 195-245

4.

Barnes, H. A., Hutton, J, F. and Walters, K., 1989, An Introduction to Rheology, Rheology Series Vol. 3, Elsevier Science Publishers, New York

5.

Schowalter, W. R., 1978, Mechanics of Non-Newtonian Fluids, Pergamon, Oxford

6.

Renardy, M, 1995, 'On the Mechanism of Drag Reduction,' J. Non-Newtonian Fluid Mech., Vol. 59, pp. 93-101

7.

Gyr, A. and Tsinober, A., 1997 'On the Rheological Nature of Drag Reduction Phenomena,' J. Non-Newtonian Fluid Mech., Vol. 73, pp. 153-162

8.

Crochet, M. J., Davies, A. R. and Walters, K., 1984, Numerical Simulation of Non-Newtonian Flow, Rheology Series Vol. I, Elsevier Science Publishers, New York

9.

Joseph, D. D., 1990, Dynamics of Viscoelastic Liquids, Springer-Verlag, New York

10.

Dupret F. and Marchal, J. M., 1986, 'Loss of Evolution in the Flow of Viscoelastic Fluids,' J Non-Newtonian Fluid Mech., Vol. 20, pp. 143-171

11.

Azaiez J. and Homsy, G. M., 1994, 'Numerical Simulation of Non-Newtonian Free Shear Flows at High Reynolds Numbers,' J. Non-Newtonian Fluid Mech., Vol. 52, pp. 333-374

12.

Beris, A. N. and Sureshkumar, R., 1995, 'Simulation of Time-Dependent Viscoelastic Channel Flow at High Reynolds Numbers,' Chemical Eng. Sci., Vol. 51, pp. 1451-1471

13.

Sureshkumar, R. and Beris, A. N., 1995, 'Effect of Artificial Stress Diffusivity on the Stability of Numerical Calculations and the Flow Dynamics of Time-Dependent Viscoelastic Flows,' J. Non-Newtonian Fluid Mech., Vol. 60, pp. 53-80

14.

Marchal, J. M. and Crochet, M. J., 1987, 'A New Mixed Finite Element Method for Calculating Viscoelastic Flow,' J Non-Newtonian Fluid Mech., Vol. 26, pp. 77-114

15.

King, R. K., Apelian, M. R., Armstrong, R. C. and Brown, R. A., 1988, 'Numerically Stable Finite Element Methods for Solution of Steady Viscoelastic Flows,' J. Non-Newtonian Fluid Mech., Vol. 29, pp, 147-216

16.

Rajagopalan, D., Armstrong, R. C. and Brown, R. A., 1990, 'Finite Element Methods for Calculation of Steady Viscoelastic Flow Using Constitutive Equations with a Newtonian Viscosity,' J. Non-Newtonian Fluid Mech., Vol. 36, pp. 159-192

17.

Yoo, J. Y. and Na, Y., 1991, 'A Numerical Study of Planar Contraction Flow of Viscoelastic Fluid Using the SIMPLER Algorithm,' J. Non-Newtonian Fluid Mech., Vol. 39, pp. 89-106

18.

Kim, J., Moin, P. and Moser, R., 1987, 'Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number,' J. Fluid Mech., Vol. 177, pp. 133-166

19.

Orlandi, P., 1995, 'A Tentative Approach to the Direct Simulation of Drag Reduction by Polymers,' J. Non-Newtonian Fluid Mech., Vol. 60, pp. 277-301

20.

Den Toonder, J. M., Hulsen, M. A., Kuiken, G. D. C. and Nieuwstadt, F. T. M., 1997, 'Drag Reduction by Polymer Additives in a Turbulent Pipe Flow,' J. Fluid Mech., Vol. 337, pp. 193-231

21.

Sureshkumar, R., Beris, A. N. and Handler, R. A., 1997, 'Direct Numerical Simulation of Turbulent Channel Flow of a Polymer Solution,' Phys. Fluids, Vol. 9, pp. 743-755

22.

Dimitropoulos, C. D. Sureshkumar, R. and Beris, A. N., 1998, 'Direct Numerical Simulation of Viscoelastic Turbulent Channel Flow Exhibiting Drag Reduction: Effect of the Variation of Rheological Parameters,' J. Non-Newtonian Fluid Mech., Vol. 79, pp. 433-468

23.

De Angelis, E., Casciola, C. M. and Piva, R., 1999, 'Wall Turbulence in Dilute Polymer Solutions,' Proceedings of 8th International Symposium on Computational Fluid Dynamics, p. 75

24.

Pilitsis, S. and Beris, A. N., 1989, 'Calculations of Steady State Viscoelastic Flow in an Undulating Tube,' J. Non-Newtonian Fluid Mech., Vol. 31, pp. 231-287

25.

Missirlis, K. A., Assimacopoulos, D. and Mitsoulis, E., 1998, 'A Finite Volume Approach in the Simulation of Viscoelastic Expansiona Flows,' J. Non-Newtonian Fluid Mech., Vol. 78, pp. 91-118

26.

Oliveira, P. J., Pinho, F. T. and Pinto, G. A., 1998, 'Numerical Simulation of Nonlinear Elastic Flows with a General Collocated Finite Volume Method,' J. Non-Newtonian Fluid Mech., Vol. 79, pp. 1-43

27.

Singh, P and Leal, L. G., 1993, 'Finite Element Simulation of the Start-up Problem for a Viscoelastic Fluid in an Eccentric Rotating Cylinder Geometry Using a Third-order Upwind Scheme,' Theor. Comput. Fluid. Dyn., Vol. 5, pp. 107-137

28.

Bird, R. B., Curtiss, C. F., Armstrong, R. C. and Hassager, O., 1987, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, John Wiley & Sons, New York

29.

Lele, S. K., 1992, 'Compact Finite Difference Schemes with Spectral-like Resolution,' J. Comput. Phys., Vol. 103, 16-42

30.

Tolstykh, A. I. and Lipavskii, M. V., 1998, 'On Performance of Methods with Third- and Fifth-order Compact Upwind Differencing,' J. Comput. Phys., Vol. 140, 205-232

31.

Ferziger, J. H. and Peric, M., 1996, Computational Methods for Fluid Dynamics, Springer-Verlag, New York

32.

Yee, H. C., Sandham, N. D. and Djomehri, M. J., 1999, 'Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic - Based Filters,' J. Comput. Phys., Vol. 150, pp. 199-238