JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows
Min, Tae-Gee; Yoo, Jung-Yul; Choi, Hae-Cheon;
  PDF(new window)
 Abstract
This study examines the effects of the discretization schemes on numerical solutions of viscoelastic fluid flows. For this purpose, a temporally evolving mixing layer, a two-dimensional vortex pair interacting with a wall, and a turbulent channel flow are selected as the test cases. We adopt a fourth-order compact scheme (COM4) for polymeric stress derivatives in the momentum equations. For convective derivatives in the constitutive equations, the first-order upwind difference scheme (UD) and artificial diffusion scheme (AD), which are commonly used in the literature, show most stable and smooth solutions even for highly extensional flows. However, the stress fields are smeared too much and the flow fields are quite different from those obtained by higher-order upwind difference schemes for the same flow parameters. Among higher-order upwind difference schemes, a third-order compact upwind difference scheme (CUD3) shows most stable and accurate solutions. Therefore, a combination of CUD3 for the convective derivatives in the constitutive equations and COM4 for the polymeric stress derivatives in the momentum equations is recommended to be used for numerical simulation of highly extensional flows.
 Keywords
Viscoelastic Fluid Flow;Extensional Flow;Numerical Breakdown;Compact Upwind Difference Scheme;
 Language
Korean
 Cited by
1.
LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (I) - 수치 실험 -,박노마;유정열;최해천;

대한기계학회논문집B, 2003. vol.27. 7, pp.973-983 crossref(new window)
 References
1.
Caswell, B., 1996, 'Report on the IXth International Workshop on Numerical Methods in Non-Newtonian Flows,' J. Non-Newtonian Fluid Mech., Vol. 62, pp. 99-110 crossref(new window)

2.
Mompean, G. and Deville, M., 1997, 'Unsteady Finite Volume Simulation of Oldroyd-B Fluid Through a Three - Dimensional Planar Contraction,' J. Non-Newtonian Fluid Mech., Vol. 72, pp. 253-279 crossref(new window)

3.
Xue, S. -C., Phan- Thien, N. and Tanner, R. I., 1998, 'Three Dimensional Numerical Simulations of Viscoelastic Flows Through Planar Contraction,' J. Non-Newtonian Fluid Mech., Vol. 74, pp. 195-245 crossref(new window)

4.
Barnes, H. A., Hutton, J, F. and Walters, K., 1989, An Introduction to Rheology, Rheology Series Vol. 3, Elsevier Science Publishers, New York

5.
Schowalter, W. R., 1978, Mechanics of Non-Newtonian Fluids, Pergamon, Oxford

6.
Renardy, M, 1995, 'On the Mechanism of Drag Reduction,' J. Non-Newtonian Fluid Mech., Vol. 59, pp. 93-101 crossref(new window)

7.
Gyr, A. and Tsinober, A., 1997 'On the Rheological Nature of Drag Reduction Phenomena,' J. Non-Newtonian Fluid Mech., Vol. 73, pp. 153-162 crossref(new window)

8.
Crochet, M. J., Davies, A. R. and Walters, K., 1984, Numerical Simulation of Non-Newtonian Flow, Rheology Series Vol. I, Elsevier Science Publishers, New York

9.
Joseph, D. D., 1990, Dynamics of Viscoelastic Liquids, Springer-Verlag, New York

10.
Dupret F. and Marchal, J. M., 1986, 'Loss of Evolution in the Flow of Viscoelastic Fluids,' J Non-Newtonian Fluid Mech., Vol. 20, pp. 143-171 crossref(new window)

11.
Azaiez J. and Homsy, G. M., 1994, 'Numerical Simulation of Non-Newtonian Free Shear Flows at High Reynolds Numbers,' J. Non-Newtonian Fluid Mech., Vol. 52, pp. 333-374 crossref(new window)

12.
Beris, A. N. and Sureshkumar, R., 1995, 'Simulation of Time-Dependent Viscoelastic Channel Flow at High Reynolds Numbers,' Chemical Eng. Sci., Vol. 51, pp. 1451-1471 crossref(new window)

13.
Sureshkumar, R. and Beris, A. N., 1995, 'Effect of Artificial Stress Diffusivity on the Stability of Numerical Calculations and the Flow Dynamics of Time-Dependent Viscoelastic Flows,' J. Non-Newtonian Fluid Mech., Vol. 60, pp. 53-80 crossref(new window)

14.
Marchal, J. M. and Crochet, M. J., 1987, 'A New Mixed Finite Element Method for Calculating Viscoelastic Flow,' J Non-Newtonian Fluid Mech., Vol. 26, pp. 77-114 crossref(new window)

15.
King, R. K., Apelian, M. R., Armstrong, R. C. and Brown, R. A., 1988, 'Numerically Stable Finite Element Methods for Solution of Steady Viscoelastic Flows,' J. Non-Newtonian Fluid Mech., Vol. 29, pp, 147-216 crossref(new window)

16.
Rajagopalan, D., Armstrong, R. C. and Brown, R. A., 1990, 'Finite Element Methods for Calculation of Steady Viscoelastic Flow Using Constitutive Equations with a Newtonian Viscosity,' J. Non-Newtonian Fluid Mech., Vol. 36, pp. 159-192 crossref(new window)

17.
Yoo, J. Y. and Na, Y., 1991, 'A Numerical Study of Planar Contraction Flow of Viscoelastic Fluid Using the SIMPLER Algorithm,' J. Non-Newtonian Fluid Mech., Vol. 39, pp. 89-106 crossref(new window)

18.
Kim, J., Moin, P. and Moser, R., 1987, 'Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number,' J. Fluid Mech., Vol. 177, pp. 133-166 crossref(new window)

19.
Orlandi, P., 1995, 'A Tentative Approach to the Direct Simulation of Drag Reduction by Polymers,' J. Non-Newtonian Fluid Mech., Vol. 60, pp. 277-301 crossref(new window)

20.
Den Toonder, J. M., Hulsen, M. A., Kuiken, G. D. C. and Nieuwstadt, F. T. M., 1997, 'Drag Reduction by Polymer Additives in a Turbulent Pipe Flow,' J. Fluid Mech., Vol. 337, pp. 193-231 crossref(new window)

21.
Sureshkumar, R., Beris, A. N. and Handler, R. A., 1997, 'Direct Numerical Simulation of Turbulent Channel Flow of a Polymer Solution,' Phys. Fluids, Vol. 9, pp. 743-755 crossref(new window)

22.
Dimitropoulos, C. D. Sureshkumar, R. and Beris, A. N., 1998, 'Direct Numerical Simulation of Viscoelastic Turbulent Channel Flow Exhibiting Drag Reduction: Effect of the Variation of Rheological Parameters,' J. Non-Newtonian Fluid Mech., Vol. 79, pp. 433-468 crossref(new window)

23.
De Angelis, E., Casciola, C. M. and Piva, R., 1999, 'Wall Turbulence in Dilute Polymer Solutions,' Proceedings of 8th International Symposium on Computational Fluid Dynamics, p. 75

24.
Pilitsis, S. and Beris, A. N., 1989, 'Calculations of Steady State Viscoelastic Flow in an Undulating Tube,' J. Non-Newtonian Fluid Mech., Vol. 31, pp. 231-287 crossref(new window)

25.
Missirlis, K. A., Assimacopoulos, D. and Mitsoulis, E., 1998, 'A Finite Volume Approach in the Simulation of Viscoelastic Expansiona Flows,' J. Non-Newtonian Fluid Mech., Vol. 78, pp. 91-118 crossref(new window)

26.
Oliveira, P. J., Pinho, F. T. and Pinto, G. A., 1998, 'Numerical Simulation of Nonlinear Elastic Flows with a General Collocated Finite Volume Method,' J. Non-Newtonian Fluid Mech., Vol. 79, pp. 1-43 crossref(new window)

27.
Singh, P and Leal, L. G., 1993, 'Finite Element Simulation of the Start-up Problem for a Viscoelastic Fluid in an Eccentric Rotating Cylinder Geometry Using a Third-order Upwind Scheme,' Theor. Comput. Fluid. Dyn., Vol. 5, pp. 107-137 crossref(new window)

28.
Bird, R. B., Curtiss, C. F., Armstrong, R. C. and Hassager, O., 1987, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, John Wiley & Sons, New York

29.
Lele, S. K., 1992, 'Compact Finite Difference Schemes with Spectral-like Resolution,' J. Comput. Phys., Vol. 103, 16-42 crossref(new window)

30.
Tolstykh, A. I. and Lipavskii, M. V., 1998, 'On Performance of Methods with Third- and Fifth-order Compact Upwind Differencing,' J. Comput. Phys., Vol. 140, 205-232 crossref(new window)

31.
Ferziger, J. H. and Peric, M., 1996, Computational Methods for Fluid Dynamics, Springer-Verlag, New York

32.
Yee, H. C., Sandham, N. D. and Djomehri, M. J., 1999, 'Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic - Based Filters,' J. Comput. Phys., Vol. 150, pp. 199-238 crossref(new window)

33.
Choi, H., Moin, P. and Kim, J., 1994, 'Active Turbulent Control for Drag Reduction in Wall-Bounded Flows,' J. Fluid Mech., Vol. 262, pp. 75-110 crossref(new window)

34.
Luchik, T. S. and Tiedermann, W. G., 1988, 'Turbulent Structure in Low-Concentration Drag-Reducing Channel Flows,' J. Fluid Mech., Vol. 190, pp. 241-263 crossref(new window)