JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Numerical Study on Shock Wave Turbulent Boundary Layer Interactions in High-Speed Flows
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Numerical Study on Shock Wave Turbulent Boundary Layer Interactions in High-Speed Flows
Mun, Su-Yeon; Son, Chang-Hyeon; Lee, Chung-Won;
  PDF(new window)
 Abstract
A study of the shock wave turbulent boundary layer interaction is presented. The focus of the study is the interactions of the shock waves with the turbulent boundary layer on the falt plate. Three examples are investigated. The computations are performed, using mixed explicit-implicit generalized Galerkin finite element method. The linear equations at each time step are solved by a preconditioned GMRES algorithm. Numerical results indicate that the implicit scheme converges to the asymptotic steady state much faster than the explicit counterpart. The computed surface pressures and skin friction coefficients display good agreement with experimental data. The flowfield manifests a complex shock wave system and a pair of counter-rotating vortices.
 Keywords
Finite Element Method;Shock Wave;Boundary Layer Interactions;Mixed Explicit-Implicit Galerkin Method;GMRES;Generalized Minimal RESidual;
 Language
Korean
 Cited by
1.
유동변수 파라미터에 의한 혼합 내-외재적 열-유동장 수치해석 방법 연구,문수연;송창현;이충원;

대한기계학회논문집B, 2001. vol.25. 7, pp.989-996 crossref(new window)
 References
1.
Degez, G., 1993, 'AGARD Special Course on Shock-wave/turbulent Boundary-layer Interactions in Supersonic and Hypersonic Flow,' AGARD Rept. 792

2.
Zheltovodov, A., Borisov, A., Knight, D., Horstman, C; and Settles, G., 1992, 'The Possibilities of Numerical Simulation of Shock Waves/Boundary Layer Interactions in Supersonic and Hypersonic Flows,' Proceedings of the International Conference on Methods of Aerophysical Research, Russian Academy Sciences, Siberian Division, Novosibirsk, pp. 164-170

3.
Chung, T. J. and Yoon, W. S., 1992, 'Hypersonic Combustion with Shock Wave in Turbulent Reacting Flows,' AIAA paper 92-3426

4.
Yoon, K.T., Moon, S.Y., Garcia, S.A., Heard, G.W., Chung, T.J., 1998, 'Flowfield-Dependent Mixed Explicit-Implicit(FDMEI) Methods for High and Low Speed and Compressible and Incompressible Flows,' Computer Methods in Applied Mechanics and Engineering, 151, pp. 75-104 crossref(new window)

5.
Edwards, C., 1976, ' A Forebody Design Technique for Highly Integrated Bottom-mounted Scramjets with Application to a Hypersonic Research Airplane,' NASA TN D-8369, Dec ..

6.
Sakell, L., Knight, D., and Zbeltovodov, A.(eds), 1994, Proceedings of the AFOSR Workshop on Fluid Dynamics of High Speed Inlets, Dept. of Mechanical and Aerospace Engineering, Rutgers Univ., New Brunswick, NJ.

7.
Knight, D. D., Garrison, T. J., Settles, G. S., Zheltovodov, A. A., Maksimov, A. I., Shevch-enko, A. M., and Vorontsov, S. S., 1995, 'Asymmetric Crossing-Shockwave/Turbulent-Boundary- Layer Interaction,' AlAA Journal, Vol. 33, No.12, , pp. 2241-2249

8.
Narayanswami, N., Horstman, C., and Knight, D., 1993, 'Computation of Crossing Shock Turbulent Boundary Layer Interaction at Mach 8.3,' AIAA Journal, Vol. 31, No.8., pp. 1369-1376

9.
Moon, S. .Y., 1998, 'Applications of FDMEI to Chemically Reacting Shock Wave Boundary Layer Interactions,' Ph. D. dissertation, UAH press

10.
Sarkar, S., 1991, 'Application of Reynolds Stress Turbulent Model to the Compressible Shear Layer,' AIAA paper 91-0523

11.
Sadd, Y., and Schultz, M. H., 1988, 'GMRES: a Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems,' SIAM J. Sci. Stat. Comp., Vol. 7, No 3, pp. 89-105 crossref(new window)

12.
Carter, J. E., 1972, 'Numerical Solutions of the Navier-Stokes Equations for the Supersonic Laminar Flow over a Two-dimensional Compression Corner,' NASA Technical Report R-385

13.
Hakkine, R. J., Greber, I., Trilling, L., and Abarbanel, S. S., 1959, 'The Interaction of an Oblique Shock Wave with a Laminar Boundary Layer,' NASA Memorandom 218-59w, March

14.
Knight, D., Badekas, D., Horstman, C., and Settles, G., 1992, 'Quasi-conical Flowfield Structure of the Three-dimensional Single Fin Interaction,' AIAA Journal, Vol. 30., No. 12, pp.2809-2816