Advanced SearchSearch Tips
Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor
Hwang, Cheol-Hong; Jeong, Yeong-Sik; Lee, Chang-Eon;
  PDF(new window)
The combustion characteristics of the hybrid catalytic(catalytic+thermal) combustor with a lean methane-air mixture on platinum catalyst were investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. for the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. The effect of operation conditions such as equivalence ratio, temperature, velocity, pressure and diameter of the monolith channel at the entrance were studied. In thermal combustor, the production of NO was more dominant than that of NO due to the relative importance of the reaction N+O(+M)→NO(+M). Finally the productions of CO and NOx by amount of methane addition were studied.
Platinum;Methane;Catalytic Combustion;Hybrid Catalytic Combustor;
 Cited by
비단열 정체면에서 촉매 표면반응의 천이 거동에 대한 이론적 해석,이수룡;

대한기계학회논문집B, 2004. vol.28. 6, pp.697-704 crossref(new window)
매트 형태의 예혼합 촉매 버너에 의한 복사 건조 특성,김혁주;안준;송광섭;

대한기계학회논문집B, 2011. vol.35. 7, pp.735-742 crossref(new window)
Ralph, A., Dalla Betta and Thomas Rostrup-Nielsen, 1999, 'Application of Catalytic Combustion to a 1.5 MW Industrial Gas Turbine,' Catalysis Today, Vol. 47, pp. 369-375 crossref(new window)

서용석, 박병식, 강성규, 1997, '저 NOx형 허니컴 촉매버너의 개발,' 대한기계학회논문집(B) 제21권, 제6호, pp. 822-829

Jang Ben W.-L., Nelson R. M., Spivey James J., Ocal Meltem, Oukaci R. and Marceln George, 1999, 'Catalytic Oxidation of Methane over Hexaaluminates and Hexaaluminate-support- ed Pd Catalysts,' Catalytic Today, Vol. 47, pp. 103-113 crossref(new window)

Kolaczkowski, S. T., 1995, 'Catalytic Stationary Gas Turbine Combustors,' Trans IChemE, Vol. 73, pp. 168-190

황철홍, 정영식, 이창언, 2000, '백금 촉매에 의해 안정화된 메탄의 연소 특성,' 제20회 KOSCO Symposium 논문집, pp. 152-161

Groppi, G., Tronconi, E. and Forzatti, P., 1999, 'Mathematical Models of Catalytic Combustors,' Catal. Rev. Sci. Eng., Vol. 42, No. 2, pp. 227-254

Raja, L. L., Kee, R. J., Deutschmann, O., Warnatz, J. and Schmidt, L. D., 2000, 'A Critical Evaluation of Navier-Stocks, Boundary-Layer and Plug-Flow Models of the Flow and Chemistry in a Catalytic-Combustion Monolith,' Catalysis Today, Vol. 59, pp. 47-60 crossref(new window)

Hickman, D. A. and Schmidt, L. D., 1993, 'Steps in $CH_4$Oxidation on Pt and Rh Surfaces : High-Temperature Reactor Simulations,' AlChE Journal, Vol. 39, No. 7, pp. 1164-1177 crossref(new window)

Deutschmann, O., Behrendt, F. and Wanatz, J., 1994, 'Modeling and Simulation of Heterogeneous Oxidation of Methane on a Platinum Foil,' Catalysis Today, Vol. 21, pp. 461-470 crossref(new window)

Chou, C. P., Chen, J. Y., Evans, G. H. and Winters, W. S., 1999, 'Numerical Studies of Methane Catalytic Combustion Inside a Monolith Honeycomb Reactor Using Multi-Step Surface Reactions,' Comb. Sci. Tech., in press crossref(new window)

Schlegel, A., Benz, P., Griffin, T., Weisentein, W. and Bockhorn, H., 1996, 'Catalytic Stabilization of Lean Premixed Combustion: Method for Improving NOx Emissions,' Combustion and Flame, Vol. 105, pp. 332-340 crossref(new window)

Schlegel, A., Buser, S. and Benz, P., 1994, 'NOx Formation in Lean Premixed Noncatalytic and Catalytically Stabilized Combustion of Propane,' 25th Symposium (Int.) on Combust., pp. 1019-1026

Dalla Betta, R. A. and Loffler, D. G., 1996, 'Selectivity Considerations in Methane Catalytic Combustion,' ASC Symposium Series 638, pp. 36-47

Bond, T. C., Noguchi, R. A., Chou, C., Mongia, R. K., Chen, J. and Dibble, R. W., 1996, 'Catalytic Oxidation of Natural Gas over Supported Platinum: Flow Reactor Experiments and Detailed Numerical Modeling,' 6th Symposium(Int.) on Combustion, pp. 1771-1778

Coltrin, M. E., Moffat, H. K., Kee, R. J. and Rupley, F. M., 1993, 'CRESLAF(Ver 4.0),' Sandia Report SAND93-0478

Kee, R. J., Rupley, F. M. and Miller, J. A., 1989, 'Chemkin-Ⅱ,' Sandia Report SAND89-8009B

Coltrin, M. E., Kee, R. J. and Rupley, F. M., 1994, 'SURFACE CHEMKIN(Ver 4.0),' Sandia Report SAND90-8003C

Kee, R. J., Dixon-Lewis, G., Wanatz, J., Coltrin, M. E. and Miller, J. A., 'A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties,' 1994, Sandia Report SAND86-8246

GRI Mech. Ver. 2.11, Available from

Nishioka M., Nakagawa S., Ishikawa Y. and Takeno T., 1994, 'NO Emission Characteristics of Methane-Air Double Flame,' Combustion and Flame, Vol. 98, pp. 185-203 crossref(new window)

Griffin, T. A. and Pfefferle, L. D., 1990, 'Gas Phase and Catalytic Ignition of Methane and Ethane in Air over Platinum,' AlChE Journal, Vol. 36, pp. 861-870 crossref(new window)

Miller, J. A. and Bowman, C. T., 1989, 'Mechanism and Modeling of Nitrogen Chemistry in Combustion,' Prog. Energy Combust. Sci., Vol. 15, pp. 287-338 crossref(new window)