JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on the Prediction of Self-absorption in Opposed Flames Using WSGGM-Based Spectral Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on the Prediction of Self-absorption in Opposed Flames Using WSGGM-Based Spectral Model
Kim, Uk-Jung; Viskanta, Raymond; Gore, Jay Prabhakar; Zhu, Xuelei;
  PDF(new window)
 Abstract
WSGGM based low-resolution spectral model for calculating radiation transfer in combustion gases is applied to estimate self-absorption of radiation energy in one-dimensional opposed flow flames. Development of such a model is necessary in order to enable detailed chemistry-radiation interaction calculations including self-absorption. Database of band model parameters which can be applied to various one-dimensional opposed flow diffusion and partially premixed flames is created. For the validation of the model and database, low resolution spectral intensities at fuel exit side are calculated and compared with the results of a narrow band model with those based on the Curtis-Godson approximation. Good agreements have been found between them. The resulting radiation model is coupled to the OPPDIF code to calculate the self-absorption of radiant energy and compared with the results of an optically thin calculation and the results of a discrete ordinates method in conjunction with the statistical narrow band model. Significant self-absorption of radiation is found for the flames considered here particularly for the fuel side of the reacting zone. However, the self-absorption does not have significant effects on the flame structure in this case. Even in the case of the low velocity diffusion flame and the partially premixed flame of low equivalence ratio, the effects of self-absorption of radiation on the flame temperature and production of minor species are not significant.
 Keywords
Radiation;Absorption Coefficient;WSGGM;Self-absorption;Flame Structure;
 Language
Korean
 Cited by
 References
1.
Ju Y., Guo H., Liu F. and Maruta K., 1999, Journal of Fluid Mechanics, 379, pp. 165-190 crossref(new window)

2.
Zhu X. L., Lim J. and Gore J. P., Combustion and Flame, submitted

3.
Daguse T., Groonenbrock T., Rolon J. C., Darabita N. and Soufiani A., 1996, Combustion and Flame, 106, pp. 271-287 crossref(new window)

4.
Chan S. H., Yin J. Q. and Shi B. J., 1998, Combustion and Flame, 112, pp. 445-456 crossref(new window)

5.
Vranos A. and Hall R. J., 1993, Combustion and Flame, 93, pp. 230-238 crossref(new window)

6.
Shih S. Y., Bedir H., T'ien, J. S. and Sung C. J., 1999, Journal of Propulsion and Power, 15, pp. 903-908

7.
Soufiani, A. and Taine, J., 1997, International Journal of Heat and Mass Transfer, 40, 987-991 crossref(new window)

8.
Tien C. L., 1968, Advances in Heat Transfer 5, Academic Press, New York, pp. 253-324

9.
Grosshandler, W. L., 1980, International Journal of Heat and Mass Transfer, 23, pp. 1447-1457 crossref(new window)

10.
Lutz A. E., Kee R. J., Grcar J. F. and Rupley F. M., 1996, Sandia Report SAND 96-8243

11.
Ludwig, C. B., Malkmus, W., Reardon, J. E. and Thompson, J. A. L., 1973, Handbook of Infrared Radiation from Combustion Gases, NASA SP-3080

12.
Edwards, D. K., 1976, Advances in Heat Transfer 12, Academic Press, New York, pp. 115-193

13.
Lallemant N. and Webber R., 1995, International Journal of Heat and Mass Transfer, 39, pp. 3273-3286 crossref(new window)

14.
Hottel, H. C. and Sarofim, A. F., 1967, Radiative Transfer, McGraw-Hill

15.
Smith, T. F., Shen, Z. F. and Friedman, J. N., 1982, Journal of Heat Transfer, 104, pp. 602-608

16.
Denison M. K. and Webb B. W., 1993, Journal of Heat Transfer, 115, pp. 1004-1012

17.
Denison M. K. and Webb B. W., 1995, Journal of Heat Transfer, 117, pp. 359-365

18.
Goody R., West R., Chen L. and Crisp D., 1989, JQSRT, 42, pp. 539-550 crossref(new window)

19.
Riviere P., Scutaru, D., Soufiani A. and Taine J., 1994, Proceeding of the Tenth International Heat Transfer Conference, Taylor & Francis, Bristol, UK, pp. 129-134

20.
Riviere P., Soufiani, A. and Taine J., 1992, JQSRT, 48, pp. 187-203 crossref(new window)

21.
Riviere, P., Soufiani, A. and Taine, J., JQSRT, 48, pp. 335-346 crossref(new window)

22.
Taine, J., and Soufiani, A., 1999, Advances in Heat Transfer 33, Academic Press, New York, pp. 295-414

23.
Kim, O. J. and Song, T. H., 1996, Numerical Heat Transfer, Part B: Fundamentals, 30, pp. 453-468 crossref(new window)

24.
Kim, O. J. and Song, T. H., 1997, Radiation '97 International Symposium on Radiative Transfer, Kusadasi, Turkey, pp. 445-459

25.
Kim, O. J. and Song, T. H., 2000, JQSRT, 64, pp. 379-394 crossref(new window)

26.
Arora, J. S., 1989, Introduction to Optimum Design, McGraw-Hill

27.
Crosbie, A. L. and Viskanta, R., 1970, JQSRT, 10, pp. 487-509 crossref(new window)

28.
Modest, M. F., 1993, Radiative Heat Transfer, International ed., McGraw-Hill, Singapore, pp. 799-802

29.
Abrams, M., 1971, Ph. D. Thesis, Purdue University, West Lafayette, IN

30.
Nishioka M., Nakagawa S., Ishikawa Y. and Takeno T., 1993, Progress in Astronautics and Aeronautics, 151, pp. 141-162

31.
Kee R. J., Miller J. A., Evans G. H. and Dixon-Lewis G., 1988, Twenty Second Symposium(International) on Combustion, The Combustion Institute, Pittsburgh, PA., pp. 1479-1494

32.
Lutz, A. E., Kee, R. J., Grcar, J. F. and Rupley, F. M., 1996, Sandia Report SAND 96-8243

33.
Kim, T. K., Menart, J. A. and Lee, H. S., 1991, Journal of Heat Transfer, 113, pp. 946-952

34.
Bowman C. T., Hanson R. K., Davidson D. F., Gardiner Jr. W. C., Lissianski V., Smith G. P., Golden D. M., Frenkach M. and Goldenberg M., http://www.me.berkeley.edu/gri_mech/

35.
Kee R. J., Rupley F. M. and Miller J. A., 1989, Sandia Report SNAD89-8009