Numerical Study of Aggregation and Breakage of Particles in Taylor Reactor

- Journal title : Transactions of the Korean Society of Mechanical Engineers B
- Volume 40, Issue 6, 2016, pp.365-372
- Publisher : The Korean Society of Mechanical Engineers
- DOI : 10.3795/KSME-B.2016.40.6.365

Title & Authors

Numerical Study of Aggregation and Breakage of Particles in Taylor Reactor

Lee, Seung Hun; Jeon, Dong Hyup;

Lee, Seung Hun; Jeon, Dong Hyup;

Abstract

Using the computational fluid dynamics (CFD) technique, we simulated the fluid flow in a Taylor reactor considering the aggregation and breakage of particles. We calculated the population balance equation (PBE) to determine the particle-size distribution by implementing the quadrature method-of-moment (QMOM). It was used that six moments for an initial moments, the sum of Brownian kernel and turbulent kernel for aggregation kernel, and power-law kernel for breakage kernel. We predicted the final mean particle size when the particle had various initial volume fraction values. The result showed that the mean particle size and initial growth rate increased as the initial volume fraction of the particle increased.

Keywords

CFD;Aggregation;Breakage;Taylor Reactor;QMOM;

Language

Korean

References

1.

Wang, L., Marchisio, D. L., Vigil, R. D. and Fox, R.O., 2005, "CFD Simulation of Aggregation and Breakage Processes in Laminar Taylor-Couette Flow," J. Colloid Interf. Sci., Vol. 282, pp. 380-396.

2.

Kataoka, K., Ohmura, N., Kouzu, M., Simamura, Y. and Okubo, M., 1995, "Emulsion Polymerization of Styrene in a Continuous Taylor Vortex Flow Reactor," Chem. Eng. Sci., Vol. 50, No. 9, pp. 1409-1416.

3.

Dluska, E., Wolinski, J. and Wronski, S., 2005, "Toward Understanding of Two-Phase Eccentric Helical Reactor Performance," Chem. Eng. Technol., Vol. 28, No. 9, pp. 1016-1021.

4.

Yamada, A., Chung, S. C. and Hinokuma, K., 2001, "Optimized LiFePO4 for Lithium Battery Cathodes," J. Electrochem. Soc., Vol. 148, No. 3, pp. A224-A229.

5.

Prosini, P. P., Carewska. M., Wisniewski. P. and Pasquali. M., 2003, "Long-term Cyclability of Nanostructured LiFePO4," Electrochim. Acta., Vol. 48, No. 28, pp. 4205-4211.

6.

Marchisio, D. L., Soos, M., Sefcik, J., Morbidelli, M., Barresi, A. A. and Baldi, G., 2006, "Effect of Fluid Dynamics on Particle Size Distribution in Particulate Processes," Chem. Eng. Technol., Vol. 29, No. 2, pp. 191-199.

7.

Nguyen, A. T., Kim, J. M., Chang, S. M. and Kim, W. S., 2010, "Taylor Vortex Effect on Phase Transformation of Guanosine 5-monophosphate in Drowning-out Crystallization," Ind. Eng. Chem. Res., Vol. 49, No. 10, pp. 4865-4872.

8.

Smoluchowski, M. V., 1917, "Versuch Einer Mathematischen Theorie der Koagulationskinetik Kolloider Losungen," Zeitschrift f. Physik. Chemie., Vol. 92, pp. 129-142.

9.

Ramkrishna, D. and Mahoney, A. W., 2002, "Population Balance Modeling. Promise for the Future," Chem. Eng. Sci. Vol. 57, pp. 595-606.

10.

Hulburt, H. M. and Katz, S., 1964, "Some Problems in Particle Technology," Chem. Eng. Sci., Vol. 19, pp. 555-574.

11.

McGraw, R., 1997, "Description of Aerosol Dynamics by the Quadrature Method of Moments," Aerosol Sci. Tech., Vol. 27, pp. 255-265.

12.

Gordon, R. G., 1968, "Error Bounds in Equilibrium Statistical Mechanics," J. Math. Phys., Vol. 9, pp. 655-672.

13.

Marchisio, D. L., Vigil, R. D. and Fox, R. O., 2003, "Implementation of the Quadrature Method of Moments in CFD Codes for Aggregation-breakage Problems," Chem. Eng. Sci., Vol. 58, pp. 3337-3351.

14.

Lemanowicz,a, M., Al-Rashed, M. H., Gierczycki, A. T. and Kocureka, J., 2009, "Application of the QMOM in Research on the Behavior of Solid-liquid Suspensions," Chem. Biochem. Eng. Q., Vol. 23, No. 2, pp. 143-151.

15.

Jerzy, B., Wojciech, O., Łukasz, M., Maciej, M. and Katarzyna, M., 2007, "Break up of Nano-particle Clusters in High-shear Devices," Chem. Eng. Process., Vol. 46, pp. 851-861.

16.

Wright, D. L., McGraw, R. and Rosner, D. E., 2002, "Bivariate Extension of the Quadrature Method of Moments for Modeling Simultaneous Coagulation and Sintering of Particle Populations," J. Colloid Interf. Sci., Vol. 236, pp. 242-251.

17.

Jung, W. M., Kang, S. H., Kim, K. S., Kim, W. S. and Choi, C. K., 2010, "Precipitation of Calcium Carbonate Particles by Gas-liquid Reaction: Morphology and Size Distribution of Particles in Couette-Taylor and Stirred Tank Reactors," J. Cryst. Growth, Vol. 312, pp. 3331-3339.

18.

ANSYS, Inc., Fluent 15.0 Theory Manual, 2013.

19.

ANSYS, Inc., Fluent 15.0 Population Balance Module Manual, 2013.

20.

Serra, T., Colomer, J. and Casamitjana, X., 1997, "Aggregation and Breakup of Particles in Shear Flows," J. Colloid Interf.Sci., Vol. 187, pp. 466-473.

21.

Serra, T. and Casamitjana, X., 1998a, "Structure of the Aggregates During the Process of Aggregation and Breakup Under Shear Flow," J. Colloid Interf. Sci., Vol. 206, pp. 505-511.