JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Development of Empirical Correlation to Calculate Pool Boiling Heat Transfer Coefficient on Inclined Tube Surface
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Development of Empirical Correlation to Calculate Pool Boiling Heat Transfer Coefficient on Inclined Tube Surface
Kang, Myeong-Gie;
  PDF(new window)
 Abstract
A new empirical correlation was developed to identify the effect of an inclination angle on pool boiling heat transfer coefficient of a tube submerged in the saturated water at atmospheric pressure. Through the experiments and the survey of published results 431 data points were obtained and the nonlinear least square method was used as a regression technique. The heat flux of the tube(), inclination angle(), and the length divided by the diameter of a tube(18~42.52) were selected as major parameters. The newly developed correlation well predicts the experimental data within , with some exceptions.
 Keywords
Pool Boiling;Heat Transfer Coefficient;Inclination Angle;Empirical Correlation;
 Language
Korean
 Cited by
 References
1.
Kang, K. H., Kim, S., Bae, B. U., Cho, Y. J., Park, Y. S. and Yun, B. J., 2012, "Separate and Integral Effect Tests for Validation of Cooling and Operational Performance of the APR+ Passive Auxiliary Feedwater System," Nuclear Engineering and Technology, Vol. 44, pp. 597-610. crossref(new window)

2.
El-Genk, M. S. and Bostanci, H., 2003, "Saturation Boiling of HFE-7100 from a Copper Surface, Simulating a Microelectronic Chip," Int. J. Heat Mass Transfer, Vol. 46, pp. 1841-1854. crossref(new window)

3.
Kang, M.G., 2014, "Pool Boiling Heat Transfer on the Inside Surface of an Inclined Tube," JP Journal of Heat and Mass Transfer, Vol. 10, pp. 47-61.

4.
Stralen, S. J. D. and Sluyter, W. M., 1969, "Investigations on the Critical Heat Flux of Pure Liquids and Mixtures under Various Conditions," Int. J. Heat Mass Transfer, Vol. 12, pp. 1353-1384. crossref(new window)

5.
Nishikawa, K., Fujita, Y., Uchida, S. and Ohta, H., 1984, "Effect of Surface Configuration on Nucleate Boiling Heat Transfer," Int. J. Heat Mass Transfer, Vol. 27, pp. 1559-1571. crossref(new window)

6.
Jung, D. S., Venant, J. E. S. and Sousa, A. C. M., 1987, "Effects of Enhanced Surfaces and Surface Orientations on Nucleate and Film Boiling Heat Transfer in R-11," Int. J. Heat Mass Transfer, Vol. 30, pp. 2627-2639. crossref(new window)

7.
Fujita, Y., Ohta, H., Uchida, S. and Nishikawa, K., 1988, "Nucleate Boiling Heat Transfer and Critical Heat Flux in Narrow Space between Rectangular Spaces," Int. J. Heat Mass Transfer, Vol. 31, pp. 229-239. crossref(new window)

8.
Sateesh, G., Das, S. K. and Balakrishnan, A. R., 2009, "Experimental Studies on the Effect of Tube Inclination on Nucleate Pool Boiling," Heat Mass Transfer, Vol. 45, pp. 1493-1502. crossref(new window)

9.
Narayan, G. P., Anoop, K. B., Sateesh, G. and Das, S. K., 2008, "Effect of Surface Orientation on Pool Boiling Heat Transfer on Nanoparticle Suspensions," Int. J. Multiphase Flow, Vol. 34, pp. 145-160. crossref(new window)

10.
Kang, M. G., 2010, "Pool Boiling Heat Transfer on the Tube Surface in an Inclined Annulus," Int. J. Heat Mass Transfer, Vol. 53, pp. 3326-3334. crossref(new window)

11.
Touhami, B., Abdelkader, A. and Mohamed, T., 2014, "Proposal for a Correlation Raising the Impact of the External Diameter of a Horizontal Tube During Pool Boiling," Int. J. Thermal Sciences, Vol. 84, pp. 293-299. crossref(new window)

12.
Holman, H. W., 1997, Heat Transfer, 8th ed., McGraw-Hill.

13.
Coleman, H. W. and Steele, W. G., 1999, Experimentation and Uncertainty Analysis for Engineers, 2nd Ed., John Wiley & Sons.

14.
Kang, M. G., 2003, "Effects of Tube Inclination on Pool Boiling Heat Transfer," Nuclear Engineering and Design, Vol. 220, pp. 67-81. crossref(new window)

15.
Kang, M. G., 2008, "Effects of Tube Inclination on Saturated Nucleate Pool Boiling Heat Transfer," Trans. Korean Soc. Mech. Eng. B, Vol. 32, pp. 327-334.

16.
Rohsenow, W. M., 1952, "A Method of Correlating Heat-transfer Data for Surface Boiling of Liquids," ASME J. Heat Transfer, Vol. 74, pp. 969-976.

17.
Cornwell, K., Schuller, R. B. and Einarsson, J. G., 1982, "The Influence of Diameter on Nucleate Boiling Outside Tubes," Proc. of the 7th International Heat Transfer Conference, Munchen, Germany.

18.
Cooper, M. G., 1984, "Heat Flow Rates in Saturated Nucleate Pool Boiling - A Wide Ranging Examination Using Reduced Properties," Advances in Heat Transfer, Vol. 16, pp. 157-239. crossref(new window)