Advanced SearchSearch Tips
Analysis of Trace Levels of Halonitromethanes (HNM) in Water using Headspace-SPME and GC-ECD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis of Trace Levels of Halonitromethanes (HNM) in Water using Headspace-SPME and GC-ECD
Kang, So-Won; Son, Hee-Jong; Seo, Chang-Dong; Kim, Kyung-A; Choi, Jin-Taek;
  PDF(new window)
Halonitromethanes (HNMs) are one of the most toxic groups of disinfection by-products. Recently, various studies have been fulfilled. An automated headspace-solid phase microextraction (SPME) gas chromatography/electron capture detector (GC-ECD) technique was developed for routine analysis of 9 HNMs in water samples. The optimization of the method is discussed. The limits of detection (LOD) and limits of quantification (LOQ) range from 90 ng/L to 260 ng/L and from 270 ng/L to 840 ng/L for 9 HNMs, respectively. Matrix effects in tap water and sea water were investigated and it was shown that the method is suitable for the analysis of trace levels of HNMs, in a wide range of waters. The method developed in the present study has the advantage of being rapid, simple and sensitive.
Halonitromethanes (HNMs);Disinfection By-products;Analysis;Solid Phase Microextraction (SPME);Gas Chromatography;
 Cited by
Son, H. J., Roh, J. S., Kim, S. G., Bae, S. M. and Kang, L. S., "Removal characteristics of chlorination disinfection by-products by activated carbons," J. Korean Soc. Environ. Eng., 27(7), 762-770(2005).

Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R. and DeMarini, D. M., "Occurrence, genotoxicity, and carcinogenecity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research," Mutat. Res., 636, 178-242(2007). crossref(new window)

Plewa, M. J., Wagner, E. D., Jazwierska, P., Richardson, S. D., Chen, P. J. and McKague, A. B., "Halonitromethane drinking water disinfection byproducts: chemical characterization and mammalian cell cytotoxicity and genotoxicity," Environ. Sci. Technol., 38, 62-68(2004). crossref(new window)

Cole, S. K., Cooper, W. J., Fox, R. V., Gardinali, P. R., Mezyk, S. P., Mincher, B. J. and O'Shea, K. E., "Free radical chemistry of disinfection byproducts. 2. Rate constants and degradation mechanisms of trichloronitromethane (chloropicrin)," Environ. Sci. Technol., 41, 863-869(2007). crossref(new window)

Richardson, S. D., "Disinfection by-products and other emerging contaminants in drinking water," Trends Anal. Chem., 22, 666-684(2003). crossref(new window)

Woo, Y. T., Lai, D., McLain, J. L., Manibusan, M. K. and Dellarco, V., "Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products," Environ. Health Perspect., 110, 75-87(2002). crossref(new window)

Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., Onstad, G. D. and Thruston, A. D., "Occurrence of a new generation of disinfection byproducts," Environ. Sci. Technol., 40(23), 7175-7185(2006). crossref(new window)

Krasner, S. W., Westerhoff, P., Chen, B. Y., Rittmann, B. E. and Amy, G., "Occurrence of disinfection byproducts in United States wastewater treatment plant effluents," Environ. Sci. Technol., 43(21), 8320-8325(2009). crossref(new window)

Liviac, D., Wagner, E. D., Mitch, W. A., Altonji, M. J. and Plewa, M. J., "Genotoxicity of water concentrates from recreational pools after various disinfection methods," Environ. Sci. Technol., 44(9), 3527-3532(2010). crossref(new window)

Bond, T., Huang, J., Templeton, M. R. and Graham, N., "Occurrence and control of nitrogeneous disinfection byproducts in drinking water-a review," Water Res., 45, 4341-4354(2011). crossref(new window)

Williams, D. T., LeBel, G. L. and Benoit, F. M., "Disinfection by-products in Canadian drinking water," Chemosphere, 34, 299-316(1997). crossref(new window)

Simpson, K. L. and Hayes, K. P., "Drinking water disinfection by-products: an Australian perspective," Water Res., 32, 1522-1528(1998). crossref(new window)

Montesinos, I., Cardador, M. J. and Gallego, M., "Determination of halonitromethanes in treated water," J. Chromatogr. A, 1218, 2497-2504(2011). crossref(new window)

Chiang, P. C., Chang, E. E., Chuang, C. C., Liang, C. H. and Huang, C. P., "Evaluating and elucidating the formation of nitrogen-contained disinfection by-products during preozonation and chlorination," Chemosphere, 80, 327-333(2010). crossref(new window)

Reckhow, D. A., Linden, K. G., Kim, J., Shemer, H. and Makdissy, G., "Effect of UV treatment on DBP formation," J. Am. Water Works Assoc., 102, 100-113(2010).

Choi, J. and Richardson, S. D., "Formation of halonitromethanes in drinking water," Proceedings of AWWA Water Quality Technology Conference, AWWA, San Antonio, Texas(2004).

Joo, S. H. and Mitch, W. A., "Nitrile, aldehyde, and halonitroalkane formation during chlorination/chloramination of primary amines," Environ. Sci. Technol., 41, 1288-1296(2007). crossref(new window)

Fang, J., Ma, J., Yang, X. and Shang, C., "Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa," Water Res., 44(6), 1934-1940(2010). crossref(new window)

Hu, J., Song, H., Addison, J. W. and Karanfil, T., "Halonitromethane formation potentials in drinking waters," Water Res., 44, 105-114(2010). crossref(new window)

Luo, Q., Chen, X., Wei, Z., Xu, X., Wang, D. and Wang, Z., "Simultaneous and high-throughput analysis iodo-trihalomethanes, haloacetonitriles, and halonitromethanes in drinking water using solid-phase microextraction/gas chromatographymass spectrometry: an optimization of sample preparation," J. Chromatogr. A, 1365, 45-53(2014). crossref(new window)

Glezer, V., Harris, B., Tal, N., Iosefzon, B. and Lev, O., "Hydrolysis of haloacetonitriles: linear free energy relationship, kinetics and products," Water Res., 33, 1938-1948(1999). crossref(new window)

Fang, J., Ling, L. and Shang, C., "Kinetics and mechanisms of pH-dependent degradation of halonitromethanes by UV photolysis," Water Res., 47, 1257-1266(2013). crossref(new window)

Allard, S., Charrois, J. W. A., Joll, C. A. and Heitz, A., "Simultaneous analysis of 10 trihalomethanes at nanogram per liter levels in water using solid-phase microextraction and gas chromatography mass-spectrometry," J. Chromatogr. A, 1238, 15-21(2012). crossref(new window)

Stack, M. A., Fitzgerald, G., O'Connell, S. and James, K. J., "Measurement of trihalomethanes in potable and recreational water using solid phase micro extraction with gas chromatography-mass spectrometry," Chemosphere, 41, 1821-1826(2000). crossref(new window)

Cho, D., Kong, S. and Oh, S., "Analysis of trihalomethanes in drinking water using headspace-SPME technique with gas chromatography," Water Res., 37, 402-408(2003). crossref(new window)

Antoniou, C. V., Koukouraki, E. E. and Diamadopoulos, E., "Determination of chlorinated volatile organic compounds in water and municipal wastewater using headspace-solid phase microextraction-gas chromatography," J. Chromatogr. A, 1132, 310-314(2006). crossref(new window)

San Juan, P. M., Carrillo, J. D. and Tena, M. T., "Fibre selection based on an overall analytical feature comparison for the solid-phase microextraction of trihalomethanes from drinking water," J. Chromatogr. A, 1139, 27-35(2007). crossref(new window)

Lara-Gonzalo, A., Sanchez-Uria, J. E., Segovia-Garcia, E. and Sanz-Medel, A., "Critical comparison of automated purge and trap and solid-phase microextraction for routine determination of volatile organic compounds in drinking waters by GC-MS," Talanta, 74, 1455-1462(2008). crossref(new window)

Garcia, E. M., Ansorenaa, D., Astiasarana, I., Ruiz, J. and Ruiz, J., "Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME)," Talanta, 64(2), 458-466(2004). crossref(new window)

San Juan, P. M., Carrillo, J. D. and Tena, M. T., "Fibre selection based on an overall analytical feature comparison for the solid-phase microextraction of trihalomethanes from drinking water," J. Chromatogr. A, 1139, 27-35(2007). crossref(new window)

Chen, P. H., Richardson, S. D., Krasner, S. W., Majetich, G. and Glish, G. L., "Hydrogen abstraction and decomposition of bromopicrin and other trihalogenated disinfection byproducts by GC/MS," Environ. Sci. Technol., 36, 3362-3371(2002). crossref(new window)

Cancho, B., Ventura, F. and Galceran, M. T., "Solid-phase microextraction for the determination of iodinated trihalomethanes in drinking water," J. Chromatogr. A, 841, 197- 206(1999). crossref(new window)

Kristiana, I., Joll, C. and Heitz, A., "Analysis of halonitriles in drinking water using solid-phase microextraction and gas chromatography-mass spectrometry," J. Chromatogr. A, 1225, 45-54(2012). crossref(new window)

Son, H. J., Song, M. J., Kim, K. A., Yoom, H. S. and Choi, J. T., "Analysis of trace levels of iodinated trihalomethanes in water using headspace-GC/ECD," J. Korean Soc. Environ. Eng., 36(1), 35-41(2014). crossref(new window)