JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Ultimate Anaerobic Biodegradability and Multiple Decay Rate Coefficients of Organic Wastes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Ultimate Anaerobic Biodegradability and Multiple Decay Rate Coefficients of Organic Wastes
Kim, Sun-Woo; Kang, Ho; Jeong, Ji-Hyun;
  PDF(new window)
 Abstract
Anaerobic mesophilic batch test of several organic wastes were carried out by a graphical statistic analysis (GSA) to evaluate their ultimate biodegradability and two distinctive decay rates ( and ) with their corresponding degradable substrate fractions ( and ). Each 3 L batch reactor was operated for more than 100 days at the substrate to inoculum ratio (S/I) of 0.5 as an initial total volatile solids (TVS) mass basis. Their Ultimate biodegradabilities were obtained respectively as follow; 69% swine waste, 45% dairy cow manure, 66% slaughterhouse waste, 79% food waste, 87% food waste leachate, 68% primary sludge and 39% waste activated sludge. The readily biodegradable fraction of 89% () of Swine Waste BVS () degraded with in the initial 31 days with of , where as the rest 11% slowly biodegradable fraction () of BVS degraded for more than 100 days with the long term batch reaction rates () of . For the Food Waste and Waste Activated Sludge, their readily biodegradable portions () appeared 89% and 80%, which degrades with of and for an initial 15 days and 28 days, respectively. Their corresponding long term batch reaction rates () were and . Results from other organic wastes are addressed in this paper. The theoretical hydraulic retention times (HRTs) of anaerobic digesters treating organic wastes are easily determined by the analysis of multiple decay rate coefficients ( and ) and their corresponding biodegradable substrate fractions ( and ).
 Keywords
Organic Wastes;Ultimate Biodegradability;Batch Test;Multiple Decay Rate Coefficients;Biodegradable Volatile Solids;
 Language
Korean
 Cited by
1.
젖소분뇨로부터 최대 바이오가스 생산과 유기물 제거효율을 달성하기 위한 반건식 간헐주입 연속혼합 혐기성반응조의 최적 수리학적 체류시간 도출을 위한 연구,강호;김선우;정지현;안희권;정광화;

대한환경공학회지, 2015. vol.37. 12, pp.696-704 crossref(new window)
1.
Assessment of Optimum Hydraulic Retention Time (HRT) for Maximum Biogas Production and Total Volatile Solid (TVS) Removal Efficiency of Semi-Continuously Fed and Mixed Reactor (SCFMR) Fed with Dairy Cow Manure, Journal of Korean Society of Environmental Engineers, 2015, 37, 12, 696  crossref(new windwow)
 References
1.
International Energy Agency (IEA), "Task 37 country reports," IEA Bioenergy(2014).

2.
Ministry of Environment (ME), "Statistics of sewerage," ME, Korea(2013).

3.
Korea Statistical Information Service (KOSIS), "Livestock survey report," KOSIS, Korea(2013).

4.
Ministry of Environment (ME), "National wastes generation and present status of disposal," ME (2013).

5.
Korea Statistical Information Service (KOSIS), "Status of livestock manure treatment in korean farms," KOSIS, Korea(2013).

6.
Ministry of Environment (ME), "Status of installation and operation for treatment facility of food waste," ME, Korea(2013).

7.
Korea Environment Institute (KEI), "A study on establishing management system for efficient organic waste-to-energy," KEI, Korea(2013).

8.
Owen, W. F., Stuckey, D. C., Healy, J. B., Young, L. Y. and McCarty, P. L., "Bioassay for monitoring biochemical methane potential and anaerobic toxicity," Water Res., 13, 485-492(1979). crossref(new window)

9.
Buswell, A. M. and Mueller, H. F., "Mechanism of Methane Fermentation," J. Ind. Eng. Chem., 44(3), 550-552(1952). crossref(new window)

10.
Kang, H. and Tritt, W. P., "Bestimmung der abbaubarkeit und substratum satzrraten von riderpansenhalt unter anaeroben bedingungen," Grundlagen der Land Technik, 40(2), 50-53(1990).

11.
Kang, H., Shin, K. S. and Richards, B., "Determination of Ultimate Biodegradability and Multiple Decay Rate Coefficients in Anaerobic Batch Degradation of Organic Wastes," J. Korean Soc. Environ. Eng., 27(5), 555-601(2005).

12.
Eugene, W. R., Rodger, B. B., Andrew, D. E. and Lenore, S. C., Standard methods for the examination of water and $wastewater^{TM}$, 22nd ed., APHA (with AWWA and Water Environ. Fed.), Hanover, pp. 4-1496(2012).

13.
Moon, S. Y., "Pretreatment Characteristics of Livestock Wastewater Using Anaerobic Filter," Chungnam National University, Korea, Master's thesis(2001).

14.
Shelton, D. R. and Tjedje, J. M., "General method for determining anaerobic biodegradation potential," Appl. Environ. Microbiol., 47, 850-857(1984).

15.
Raposo, F., Banks, C. J., Siegert, I., Heaven, S. and Borja, R., "Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests," Proc. Biochem., 41(6), 1444-1450(2006). crossref(new window)

16.
Tchobanoglous, G., Theisen, H. and Vigil, S., "Integrated Solid Waste Management-Engineering Principles and Management Issues," McGraw Hill, New York, pp. 679-683(1993).

17.
Kang, H. and Weilang, P., "Ultimate Anaerobic Biodegradability of Some Agro-industrial Residues," Bioresour. Technol., 43, 107-111(1993). crossref(new window)

18.
Kang, H., "A Feasibility study for renewable energy biogas from sewage sludge," Daejeon Environmental Technology Center, Korea(2008).

19.
McCarty, P. L., "Anaerobic waste treatment fundamentals, Presented at the Birmingham short course on design aspects of biological treatment," Inter. Assoc. Water Pol. Res., Birmingham, Unitied Kingdom(1964).

20.
Fabien, M., "An Introduction to Anaerobic Digestion of Organic Wastes," Remade Scotland, Scotland(2003).

21.
Cho, S. S., "A study on anaerobic digestion of biological and chemical sludge produced from municipal wastewater treatment for phosphorus removal," Chungnam National University, Korea, Master's thesis(2011)

22.
Heo, N. H., Lee, S. H. and Kim, B. K., "Biochemical Methane Potential and Biodegradability of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland," J. Korean Soc. New and Renewable Energy, 4(4), 56-64(2008).

23.
Rodriguez, A. A. and Lomas E. J., "Kinetic study of the anaerobic digestion of the solid fraction of piggery slurries," Bio. Bioener., 17, 435-443(1999). crossref(new window)

24.
Pham, C. H., Triolo, J. M., Cu, T. T. T., Pedersen, L. and Sommer, S. G., "Validation and recommendation of method to measure biogas production potential of animal manure," Asian Australias J. Anim. Sci., 26(6), 864-873(2013). crossref(new window)

25.
Kang, H., Jeong, J. H., Lee, H. M., Park, S. W, Cho, S. S. and Lim, S. A., "Anaerobic Biodegradability of Livestock Manure and Agro-industrial Biomass," HALLA Ind. Co. Ltd., Korea(2009).

26.
Kang, H., "Proximate Analysis of Food Waste Generated from Different Sources and Its Biogas Potential," Ins. of Environ. Biosystem in Chungnam National University(2006).

27.
Kang, H., "Improvement of Food Waste Treatment in Two Phase Anaerobic Digestion," Daejeon Environ. Technol. Center, Korea(2012).

28.
An, J. Y., "A Study on the Methane Generation Potential of Food Waste using BMP (Biochemical Methane Potential) Test," Yeungnam National University, Korea, Master's thesis (2012).

29.
Jeong, K. H., "Study on installation of effective and sustainable treatment facility (anaerobic digester) - To treat food waste and food waste leachate in Daejeon Metropolitan city," Chungnam National University, Korea, Master's thesis(2014)

30.
Gavala, H. N., Yenal, U., Skiadas, I. V., Westermann, P. and Ahring, B. K., "Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pretreatment at elevated temperature," Water Res., 37(19), 4561-4572(2003). crossref(new window)

31.
Shin, S. G., "Assessment of Methane Production Potential of Organic Wastes," Chungbuk National University, Korea, Master's thesis(2015).

32.
Feng, Y., Zhang, Y., Quan, X. and Chen, S., "Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron," Water Res., 52, 242-250(2014). crossref(new window)

33.
Kang, H., "Determination of optimum mixed ratio of livestock manure and agricultural biomass in anaerobic codigestion," Rural Res. Ins., Korea(2010).