JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Evaluation of Biodegradation Kinetic in Biological Activated Carbon (BAC) Process for Drinking Waste Treatment : Effects of EBCT and Water Temperature
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Evaluation of Biodegradation Kinetic in Biological Activated Carbon (BAC) Process for Drinking Waste Treatment : Effects of EBCT and Water Temperature
Son, Hee-Jong; Kang, So-Won; Yoom, Hoon-Sik; Ryu, Dong-Choon; Cho, Man-Gi;
  PDF(new window)
 Abstract
In this study, the effects of empty bed contact time (EBCT) and water temperature on the biodegradation of 9 halonitromethanes (HNMs) in biological activated carbon (BAC) process were investigated. Experiments were conducted at three water temperatures (, and ) and three EBCTs (5, 10 and 15 min). Increasing EBCT and water temperature increased the biodegradation efficiency of HNMs in BAC column. Dibromochloronitromethane (DBCNM) and tribromonitromethane (TBNM) showed the highest biodegradation efficiency, but chloronitromethane (CNM) and dichloronitromethane (DCNM) were the lowest. The kinetic analysis suggested a pseudo-first-order reaction model for biodegradation of 7 HNMs at various water temperatures and EBCTs. The pseudo-first-order biodegradation rate constants () of 7 HNMs ranged from at to at . By increasing the water temperature from to , the biodegradation rate constants () were increased 1.6~2.4 times.
 Keywords
Halonitromethanes (HNMs);Biological Activated Carbon (BAC) Process;Biodegradation;Water Temperature;Empty Bed Contact Time (EBCT);
 Language
Korean
 Cited by
 References
1.
Son, H. J., Roh, J. S., Kim, S. G., Bae, S. M. and Kang, L. S., "Removal characteristics of chlorination disinfection by-products by activated carbons," J. Korean Soc. Environ. Eng., 27(7), 762-770(2005).

2.
Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R. and De Marini, D. M., "Occurrence, genotoxicity, and carcinogenecity of regulated and emerging disinfection byproducts in drinking water: a review and roadmap for research," Mutat. Res., 636, 178-242(2007). crossref(new window)

3.
Plewa, M. J., Wagner, E. D., Jazwierska, P., Richardson, S. D., Chen, P. J. and McKague, A. B., "Halonitromethane drinking water disinfection byproducts: chemical characterization and mammalian cell cytotoxicity and genotoxicity," Environ. Sci. Technol., 38, 62-68(2004). crossref(new window)

4.
Cole, S. K., Cooper, W. J., Fox, R. V., Gardinali, P. R., Mezyk, S. P., Mincher, B. J. and O'Shea, K. E., "Free radical chemistry of disinfection byproducts. 2. Rate constants and degradation mechanisms of trichloronitromethane (chloropicrin)," Environ. Sci. Technol., 41, 863-869(2007). crossref(new window)

5.
Richardson, S. D., "Disinfection by-products and other emerging contaminants in drinking water," Trends Anal. Chem., 22, 666-684(2003). crossref(new window)

6.
Woo, Y. T., Lai, D., McLain, J. L., Manibusan, M. K. and Dellarco, V., "Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products," Environ. Health Perspect., 110, 75-87(2002). crossref(new window)

7.
Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., Onstad, G. D. and Thruston, A. D., "Occurrence of a new generation of disinfection byproducts," Environ. Sci. Technol., 40(23), 7175-7185(2006). crossref(new window)

8.
Krasner, S. W., Westerhoff, P., Chen, B. Y., Rittmann, B. E. and Amy, G., "Occurrence of disinfection byproducts in United States wastewater treatment plant effluents," Environ. Sci. Technol., 43(21), 8320-8325(2009). crossref(new window)

9.
Liviac, D., Wagner, E. D., Mitch, W. A., Altonji, M. J. and Plewa, M. J., "Genotoxicity of water concentrates from recreational pools after various disinfection methods," Environ. Sci. Technol., 44(9), 3527-3532(2010). crossref(new window)

10.
Bond, T., Huang, J., Templeton, M. R. and Graham, N., "Occurrence and control of nitrogeneous disinfection by-products in drinking water-a review," Water Res., 45, 4341-4354(2011). crossref(new window)

11.
Williams, D. T., LeBel, G. L. and Benoit, F. M., "Disinfection by-products in Canadian drinking water," Chemosphere, 34, 299-316(1997). crossref(new window)

12.
Simpson, K. L. and Hayes, K. P., "Drinking water disinfection by-products: an Australian perspective," Water Res., 32, 1522-1528(1998). crossref(new window)

13.
Montesinos, I., Cardador, M. J. and Gallego, M., "Determination of halonitromethanes in treated water," J. Chromatogr. A, 1218, 2497-2504(2011). crossref(new window)

14.
Chiang, P. C., Chang, E. E., Chuang, C. C., Liang, C. H. and Huang, C. P., "Evaluating and elucidating the formation of nitrogen-contained disinfection by-products during pre-ozonation and chlorination," Chemosphere, 80, 327-333(2010). crossref(new window)

15.
Reckhow, D. A., Linden, K. G., Kim, J., Shemer, H. and Makdissy, G., "Effect of UV treatment on DBP formation," J. Am. Water Works Assoc., 102, 100-113(2010).

16.
Choi, J. and Richardson, S. D., "Formation of halonitromethanes in drinking water," Proceedings of AWWA Water Quality Technology Conference, AWWA, San Antonio, Texas, (2004).

17.
Joo, S. H. and Mitch, W. A., "Nitrile, aldehyde, and halonitroalkane formation during chlorination/chloramination of primary amines," Environ. Sci. Technol., 41, 1288-1296(2007). crossref(new window)

18.
Fang, J., Ma, J., Yang, X. and Shang, C., "Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa," Water Res., 44 (6), 1934-1940(2010). crossref(new window)

19.
Hu, J., Song, H., Addison, J. W. and Karanfil, T., "Halonitromethane formation potentials in drinking waters," Water Res., 44, 105-114(2010). crossref(new window)

20.
Bond T., Templeton M. R., Rifai O., Ali H. and Graham N. J. D., "Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates," Chemosphere, 111, 218-224(2014). crossref(new window)

21.
Chuang, Y. and Tung, H., "Formation of trichloronitromethane and dichloroacetonitrile in natural waters: precursor characterization, kinetics and interpretation," J. Hard. Mater., 283, 218-226(2015). crossref(new window)

22.
Zhou, S., Zhu, S., Shao, Y. and Gao, N., "Characteristics of C-, N-DBOs formation from algal organic matter: role of molecular weight fractions and impacts of pre-ozonation," Water Res., 72, 381-390(2015). crossref(new window)

23.
Mezyk, S. P., Mincher, B. J., Cooper, W. J., Cole, S. K., Fox, R. V. and Gardinali, P. R., "Kinetic model for the radical degradation of tri-halonitromethane disinfection byproducts in water," Radit. Phys. Chem., 81, 1646-1652(2012). crossref(new window)

24.
Fang, J., Liang, L. and Shang, C., "Kinetics and mechanisms of pH-dependent degradation of halonitromethanes by UV photolysis," Water Res., 47, 1257-1266(2013). crossref(new window)

25.
Seo, C. D., Son, H. J., Jung, J. M., Choi, J. T., Ryu, D. C. and Jang, S. H., "Biodegradation of UV filters in biological activated carbon (BAC) process : biodegradation kinetic," J. Korean Soc. Environ. Eng., 36(11), 739-746(2014). crossref(new window)

26.
Seo, C. D., Son, H. J., Ryu, D. C., Kang, S. W. and Jang, S. H., "Biodegradation of synthetic fragrances in biological activated carbon (BAC) process : biodegradation kinetic," J. Korean Soc. Environ. Eng., 36(12), 858-864(2014). crossref(new window)

27.
Seo, I. S., Son, H. J., Choi, Y. I., Ahn, W. S. and Park, C. K., "Removal characteristics of nitrogenous organic chlorination disinfection by-products by activated carbons and biofiltration," J. Korean Soc. Environ. Eng., 29(2), 184-191(2007).

28.
Son, H. J., Yoo, S. J., Yoo, P. J. and Jung, C. W., "Effects of EBCT and water temperature on HAA removal using BAC process," J. Korean Soc. Environ. Eng., 30(12), 1255-1261(2008).

29.
Son, H. J., Yoo, S. J., Roh, J. S. and Yoo, P. J., "Biological activated carbon (BAC) process in water treatment," J. Korean Soc. Environ. Eng., 31(4), 308-323(2009).

30.
Goel, S., Hozalski, R. M. and Bouwer, E. J., "Biodegradation of NOM: effect of NOM source and ozone dose," J. Am. Water Works Assoc., 87(1), 90-105(1995).

31.
Ko, J. H., Son, H. J., Kim, Y. J., Bae, S. M., Yoo, P. J. and Lee, T. H., "Biodegradation characteristics of aldehydes using biological activated carbon process," J. Korean Soc. Environ. Eng., 31(11), 989-996(2009).

32.
Son, H. J., Roh, J. S. and Kang, L. S., "Determination of BDOCrapid and BDOCslow using batch bio-reactor," J. Korean Soc. Water Qual., 20(4), 357-364(2004).

33.
Kang, S. W., Son, H. J., Seo, C. D., Kim, K. A. and Choi, J. T., "Analysis of trace levels of halonitromethanes (HNMs) in water using headspace-SPME and GC-ECD," J. Korean Soc. Environ. Eng., submitted.

34.
Ko, J. H., Son, H. J., Kim, Y. J., Bae, S. M., Yoo, P. J. and Lee, T. H., "Biodegradation characteristics of aldehydes using biological activated carbon process," J. Korean Soc. Environ. Eng., 31(11), 989-996(2009).

35.
Zhou, H. and Xie, Y., "Using BAC for HAA removal-part 1: batch study," J. Am. Water Works Assoc., 94(4), 194-200(2002).

36.
Xie, Y. and Zhou, H., "Use of BAC for HAA removal-part 2: column study," J. Am. Water Works Assoc., 94(5), 126-134(2002).