JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Removal Characteristics of Boron and Humic Acid by Pre-blending Seawater and Brackish Water Using UF-SWRO Hybrid Process in Pilot-scale Plant for Desalination
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Removal Characteristics of Boron and Humic Acid by Pre-blending Seawater and Brackish Water Using UF-SWRO Hybrid Process in Pilot-scale Plant for Desalination
Kim, Won-Kyu; Shin, Sung-Hoon; Lee, Haksu; Woo, Dal-Sik;
  PDF(new window)
 Abstract
Using UF-SWRO hybrid process, pre-blending tests of seawater and brackish water were performed to investigate the effects on removal of boron and humic acid (HA). Feedwater pre-blending was set based on TDS concentration from 15,000 mg/L to 27,000 mg/L and analyzed for boron removal characteristics. Also organics rejection at same TDS concentration range was investigated by injecting HA. Boron concentration appeared to be high as TDS concentration was high ranging from 76.60% to 83.27%, but boron concentration in final produced water was increased up to 0.69 mg/L from 0.48 mg/L. In cases of HA tests at 10 mg/L, 22,500 mg/L TDS appeared to be higher removal rate of 17.59% than a very poor result of 8.43% in 27,000 mg/L. But high HA removal rate of 57.14% was obtained in produced water with 22,500 mg/L TDS containing 10 mg/L of HA and 27,000 mg/L TDS yielded lower boron removal rate of 54.49%. Meanwhile it was found that a relatively high flux and recovery rate were obtained following process when feedwater was injected with HA. It is considered that most of fouling substances were eliminated by binding between HA and . Thus, when desalination using UF-SWRO with respect to boron and HA, TDS concentration is determined to be advantageous as lower.
 Keywords
Desalination;UF-SWRO;Pre-blending;Boron;Humic Acid;
 Language
Korean
 Cited by
 References
1.
Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J. and Mayes, A. M., "Science and technology for water purification in the coming decades," Nature, 452(7185), 301-310(2008). crossref(new window)

2.
Baltasar, P. and Lourdes, G. R., "Current trends and future prospects in the design of seawater reverse osmosis desalination technology," Desalination, 284(4), 1-8(2012). crossref(new window)

3.
Ali, A. T. and Adel, O. S., "Alternative design to dual stage NF seawater desalination using high rejection brackish water membranes," Desalination, 273(2-3), 391-397(2011). crossref(new window)

4.
IDA desalination yearbook 2009-2010, "Global Water Intelligence," IDA, 6-7(2009).

5.
Zaidi, S. M. J., Fadhillah, F., Khan, Z. and Ismail, A. F., "Salt and water transport in reverse osmosis thin tilm composite seawater desalination membranes," Desalination, 368(15), 202-213(2015). crossref(new window)

6.
Vrouwenvelder, H. S., van Paassen, J. A. M., Folmer, H. C., Hofman, J. A. M. H., Nederlof, M. M. and van der Kooij, D., "Biofouling of membranes for drinking water production," Desalination, 118(1-3), 157-166(1998). crossref(new window)

7.
National Research Council, Desalination: A National Perspective, Amy K. Zander, The National Academies Press, Washington, D. C., pp. 138-141(2008).

8.
Jermann, D., Pronk, W., Kagi, R., Halbeisen, M. and Boller, M., "Influence of interactions between NOM and particles on UF fouling mechanisms," Water Res., 42(14), 3870-3878 (2008). crossref(new window)

9.
Yuan, W. and Zydney, A. L., "Humic acid fouling during microfiltration," J. Membr. Sci., 157(1), 1-12(1999). crossref(new window)

10.
Huang, H., Young, T. and Jacangelo, J. G., "Novel approach for the analysis of bench-scale, low pressure membrane fouling in water treatment," J. Membr. Sci., 334(1-2), 1-8(2009). crossref(new window)

11.
Li, S., Heijman, S. G. J., Verberk, J. Q. J. C. and van Dijk, J. C., "Influence of Ca and Na ions in backwash water on ultrafiltration fouling control," Desalination, 250(2), 861-864 (2010). crossref(new window)

12.
Pinheiro, J., Mota, A., d'Oliveira, J. and Martinho, J., "Dynamic properties of humic matter by dynamic light scattering and voltammetry," Anal. Chim. Acta, 329(1-2), 15-24(1996). crossref(new window)

13.
World Health Organization (WHO), Guidelines for Drinking-Water Quality fourth edition, http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en(2011).

14.
Official Journal of European Communities, Council Directive 98/83/EC, http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&rid=12(1998).

15.
Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. and Moulin, P., "Reverse osmosis desalination: water sources, technology, and today's challenges," Water Res., 43(9), 2317-2348(2009). crossref(new window)

16.
Kabay, N., Bryjak, M., Schlosser, S., Kitis, M., Avlonitis, S., Matejka, Z., AI-Mutaz, I. and Yuksel, M., "Adsorption-membrane filtration (AMF) hybrid process for boron removal from seawater: an overview," Desalination, 223(1-3), 38-48 (2008). crossref(new window)

17.
Yavuz, E., Arar, O., Yuksel, M., Yuksel, U. and Kabay, N., "Removal of boron from geothermal water by RO system-II-effect of pH," Desalination, 310(1), 135-139(2013). crossref(new window)

18.
Abdul Azis, P. K., Al-Tisan I. and Sasikumar, N., "Biofouling potential and environmental factors of seawater at a desalination plant intake," Desalination, 135(1-3), 69-82(2001). crossref(new window)

19.
Guler, E., Kabay, N., Yuksel, M., Yavuz, E. and Yuksel, U., "A comparative study for boron removal from seawater by two types of polyamide thin film composite SWRO membranes," Desalination, 273(1), 81-84(2011). crossref(new window)

20.
Bujakowski, W., Pajak, L. and Tomaszewska, B., "Renewable energy resources in the Silesian Voivodship (southern Poland) and their potential utilization," Miner. Resour. Manag., 24 (2), 409-426(2008).

21.
Hoffer, E. and Kedem, O., "Ion separation by hyperfiltration through charged membrane. I. Calculation based on TMS model," Indus. Eng. Chem. Proc. Des. Dev., 11(2), 221-225 (1972a). crossref(new window)

22.
Hoffer, E. and Kedem, O., "Ion separation by hyperfiltration through charged membranes. II. Separation performance of collodion-polybase membranes," Indus. Eng. Chem. Proc. Des. Dev., 11(2), 226-228(1972b).

23.
Yaroshchuk, A. E., "Negative rejection of ions in pressure-driven membrane processes," Adv. Colloid Interface Sci. 139(1-2), 150-173(2008). crossref(new window)

24.
Nir, O., Marvin, E. and Lahav, O., "Accurate and self-consistent procedure for determining pH in seawater desalination brines and its manifestation in reverse osmosis modeling," Water Res., 64(1), 187-195(2014). crossref(new window)

25.
Busch, M., Michols, W. E., Jons, S., Redondo, J. and Witte, J. D., "Boron removal in sea water desalination," Int. Desalination and Water Reuse Quart., 13(4), 25(2004).

26.
Chang, H., Qu, F., Liu, B., Yu, H., Li, K., Shao, S., Li, G. and Liang, H., "Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid: Effects of membrane properties and backwash water composition," J. Membr. Sci., 493(1), 723-733(2015). crossref(new window)

27.
Hong, S. K. and Elimelech, M., "Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes," J. Membr. Sci., 132(2), 159-81(1997). crossref(new window)