JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Design & Implementation of Pedestrian Detection System Using HOG-PCA Based pRBFNNs Pattern Classifier
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Design & Implementation of Pedestrian Detection System Using HOG-PCA Based pRBFNNs Pattern Classifier
Kim, Jin-Yul; Park, Chan-Jun; Oh, Sung-Kwun;
  PDF(new window)
 Abstract
In this study, we introduce the pedestrian detection system by using the feature of HOG-PCA and RBFNNs pattern classifier. HOG(Histogram of Oriented Gradient) feature is extracted from input image to identify and recognize a object. And a dimension is reduced for improving performance as well as processing speed by using PCA which is a typical dimensional reduction algorithm. So, the feature of HOG-PCA through the dimensional reduction by using PCA leads to the improvement of the detection rate. FCM clustering algorithm is used instead of gaussian function to apply the characteristic of input data as well and connection weight is used by polynomial expression such as constant, linear, quadratic and modified quadratic. Finally, INRIA person database known as one of the benchmark dataset used for pedestrian detection is applied for the performance evaluation of the proposed classifier. The experimental result of the proposed classifier are compared with those studied by Dalal.
 Keywords
Histogram of oriented gradient;Radial basis function neural network;Principal component analysis;FCM;
 Language
Korean
 Cited by