JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on the Partial Discharge Resistance Properties of Epoxy/Micro/Nano Alumina Composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on the Partial Discharge Resistance Properties of Epoxy/Micro/Nano Alumina Composites
Park, Jae-Jun;
  PDF(new window)
 Abstract
Neat Epoxy, nano alumina composites, micro alumina composites and multi-nano alumina composites were prepared and experiment were performed to measure their partial discharge resistant characteristics. The partial discharge resistance obtained for the microcomposites, nanocomposites and multi-nanocomposites are compared with those of unfilled epoxy and with GDE amount for surface modifier. It was observed that compare multi-nano alumina composites to micro alumina composites, the partial discharge resistance to degradation gets improved considerably. The improvement in the degradation resistance is attributed to the interface intension between the nano alumina composites and GDE, micro alumina and epoxy neat.
 Keywords
GIS spacer;Epoxy nano alumina composites;Partial Discharge Resistance(PDR);Multi-nano alumina composites;
 Language
Korean
 Cited by
 References
1.
J. Keith Nelson, J. C. Fothergill, "Internal charge behavior of nanocomposites", Nanotechnology, Vol. 15, 2004

2.
Q. Wang, G. Chen. and A. S. Alghamdi, "Influence of nanofillers on electrical characteristics of epoxy resins insulation", IEEE International Conference on Solid Dielectrics, 2010

3.
T. Andritsch, R. Kochetov, P. H. Morshuis, and J. J. Smitt, "Dielectric properties and space charge behavior of MgO-epoxy nanocomposites", IEEE International Conference on Soild Dielectrics, 2010

4.
R. Kochetov, T. Andritsch, U. Lafort, P. H. F. Morshuis, S. J. Picke, and J. J. Smit, "Preparation and Dielectric Properties of Epoxy-BN and Epoxy-AIN Nanocomposites," IEEE Electrical Insulation Conference, PP. 397-400, 2009.

5.
T. Tanaka, Y. Ohki, M. Ochi, M. Harada, and T. Imai, "Enganced partial discharge resistance of epoxy/clay nanocomposite prepared by newly developed organic modification and solubilization methods," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, PP. 81-89, 2008. crossref(new window)

6.
M. kozako, N. Fuse, Y. Ohki, T. Okamoto, T. Tanaka, "Surface Degradation of Polyamide Nanocomposites Caused by Partial Discharges Using IEC(b) Electrodes", IEEE Trans. Dielectr. Electr. Insul., Vol. 11, pp. 833-839, 2004. crossref(new window)

7.
M Kozako, R Kido, T Imai, T Ozaki, T Shimizu and T. Tanaka, "Surface Roughness Change of Epoxy/TiO2 Nanocomposites due to Partial Discharges", Intern. Sympos. Electrical Insulating Materials, Kitakyushu, Japan, pp. 661-64, 2005.

8.
Jae-jun Park, "Effect of Electric Frequency on the Partial Discharge Resistance of Epoxy Systems with Two Diluents", Transaction on Electrical and Electronic Materials, Vol. 14, No. 6, pp. 317-320, 2013 crossref(new window)

9.
T Tanaka, T Yazawa, Y Ohki, M Ochi, M Harada and T Imai, "Frequency Accelerated Partial Discharge Resistance of Epoxy/Clay Nanocomposite Prepared by Newly Developed Organic Modification and Solybilization Methods", IEEE Intern. Conf. Solid Dielectrics (ICSD), Winchester, UK, PP. 337-340, 2007.

10.
N. Fuse, Y. Ohki, M. Kozako and T. Tanaka, "Possible Mechanisms of Superior Tesistance of Polyamide Nanocomposites to Partial Discharges and Plasmas", IEEE Trans. Dielectr. Electr. Insul., Vol. 15 pp. 161-170, 2008. crossref(new window)

11.
P. Preetha and M. Joy Thomas, "Partial Discharge Resistant Characteristics of Epoxy Nanocomposites", IEEE Trans. Dielectr. Electr. Insul., Vol. 18, PP. 264-274, 2011. crossref(new window)

12.
T. Tanaka, M. Kozako, N. Fuse and Y. Ohki, "Proposal of a Multi-core Model for Polymer Nanocomposite Dielectrics", IEEE Trans. Dielectr. Electr. Insul., Vol 12, pp. 669-681, 2005. crossref(new window)