JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Boundary-preserving Stereo Matching based on Confidence Region Detection and Disparity Map Refinement
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Boundary-preserving Stereo Matching based on Confidence Region Detection and Disparity Map Refinement
Yun, In Yong; Kim, Joong Kyu;
  PDF(new window)
 Abstract
In this paper, we propose boundary-preserving stereo matching method based on adaptive disparity adjustment using confidence region detection. To find the initial disparity map, we compute data cost using the color space (CIE Lab) combined with the gradient space and apply double cost aggregation. We perform left/right consistency checking to sort out the mismatched region. This consistency check typically fails for occluded and mismatched pixels. We mark a pixel in the left disparity map as "inconsistent", if the disparity value of its counterpart pixel differs by a value larger than one pixel. In order to distinguish errors caused by the disparity discontinuity, we first detect the confidence map using the Mean-shift segmentation in the initial disparity map. Using this confidence map, we then adjust the disparity map to reduce the errors in initial disparity map. Experimental results demonstrate that the proposed method produces higher quality disparity maps by successfully preserving disparity discontinuities compared to existing methods.
 Keywords
Confidence map;Mean-shift segmentation;Adaptive hole filling;Adaptive weighted filter;
 Language
Korean
 Cited by
 References
1.
W. Fife, J. Archibald, Improved census transforms for resource-optimized stereo vision, IEEE TCSVT 23, pp. 60-73, 2013.

2.
N.Y. Chang, T. Tsai, B. Hsu, Y. Chen, T. Chang, Algorithm and architecture of disparity estimation with mini-census adaptive support weight, IEEE TCSVT 20 (6), pp.792-805, 2010.

3.
X. Sun, X. Mei, S. Jiao, M. Zhou, H. Wang, Stereo Matching with Reliable Disparity Propagation, 3DIMPVT, 2011.

4.
C. Cigla, A.A. Alatan, Information Permeability for Stereo Matching, Elsevier Signal Processing: Image Communication, 2013.

5.
F. Tombari, S. Mattoccia, L. Di Stefano, E. Addimanda, Classification and Evaluation of Cost Aggregation Methods for Stereo Correspondence, CVPR, pp. 1-8, 2008.

6.
M. Gong, R.G. Yang, W. Liang, M.W. Gong, A performance study on different cost aggregation approaches used in real-time stereo matching, IJCV 75, pp. 283-296, 2007. crossref(new window)

7.
K.-J. Yoon, I.S. Kweon, Adaptive support-weight approach for correspondence search, IEEE TPAMI 28, pp. 650-656, 2006. crossref(new window)

8.
L. Di Stefano, F. Tombari, S. Mattoccia, Segmentation-based adaptive support for accurate stereo correspondence, IEEE Pacific-Rim Symp. Image and Video, 2007

9.
K. He, J. Sun, and X. Tang, Guided image filtering, ECCV, 2010

10.
A. Hosni, C. Rhemann, M. Bleyer, C. Rother, M. Gelautz, Fast cost-volumefiltering for visual correspondence and beyond, IEEE TPAMI 35 (2), pp. 504-511, 2013. crossref(new window)

11.
V. Kolmogorov, R. Zabih, Computing Visual Correspondence with Occlusions Using Graph Cuts, ICCV, 2, pp. 508-515, 2001.

12.
A. Klaus, M. Sormann, K. Karner, Segment-based Stereo Matching Using Belief Propagation and a Self-adapting Dissimilarity Measure, ICPR, pp. 15-18, 2006.

13.
Z.F. Wang, Z.G. Zheng, A Region Based Stereo Matching Algorithm Using Cooperative Optimization, CVPR, pp. 1-8, 2009.

14.
J. Kim, K. Lee, B. Choi, S. Lee, A Dense Stereo Matching Using Two-pass Dynamic Programming with Generalized Ground Control Points, CVPR, pp. 1075-1082, 2005.

15.
H. Hirschmller, Stereo processing by semiglobal matching and mutual information, IEEE TPAMI 30, pp. 328-341, 2009.

16.
Q. Yang, L. Wang, R. Yang, H. Stewenius, D. Nister, Stereo matching with colorweighted correlation, hierarchical belief propagation and occlusion handling, IEEE TPAMI 31, pp. 492-504, 2009. crossref(new window)

17.
H. Lei, C. K. Jung, Reliability-Based Discontinuity -Preserving Stereo Matching, IEEE TCSVT, 2015.

18.
D. Comanicu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Trans. Pattern Anal. Machine Intell., May 2002.

19.
X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, X. Zhang, On building an accurate stereo matching system on graphics hardware, ICCV, pp 6-13, 2011.

20.
A. Hosni, M. Bleyer, C. Rhemann, M. Gelautz, C. Rother, REal-time local stereo matching using guided image filtering, ICME, pp, 1-6, 2011.

21.
http://www.middlebury.edulstereo/

22.
D. Scharstein and R. Szeliski, "A taxonomy and evaluation of dense two frame stereo correspondence algorithms," IJCV, vol. 47, no. 112/3, pp. 7-42, 2002. crossref(new window)

23.
Z. Ma, K. He, Y. Wei, J. Sun, E. Wu, Constant Time Weighted Median Filtering for Stereo Matching and Beyond, ICCV, pp. 1-8, 2013.

24.
M. Michael, J. Salmen, J. Stallkamp, M. Schlipsing, Real-time stereo vision: optimizing semi-global matching, in: Proc. IEEE Intelligent Vehicles Symposium (IV), pp. 1197-1202, 2013.

25.
N. Manap, J. Soraghan, Disparity refinement based on depth image layers separation for stereo matching algorithms, J. Telecommun. Electron. Comput. Eng. 4 (1), pp. 51-64, 2012.

26.
V. Gonzalez, I. Cabezas, Estimacion de puntos correspondientes mediante programacion dinamica, Congreso Multimedia, 2009.