JOURNAL BROWSE
Search
Advanced SearchSearch Tips
An Analysis of Characteristic of Ice Load Distribution on Model Ship due to Ship and Ice Interaction
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
An Analysis of Characteristic of Ice Load Distribution on Model Ship due to Ship and Ice Interaction
Jeong, Seong-Yeob; Choi, Kyungsik; Cheon, Eun-Jee;
  PDF(new window)
 Abstract
Knowledge about ice load distribution along the ship hull due to ship-ice interaction can provide important background information for the development of design codes for ice-going vessels. The objective of this study is to understand ship and ice interaction phenomena and determine the magnitude of ice load acting along a ship hull. The model tests were performed in the ice model basin in Korea Research Institute of Ships and Ocean engineering (KRISO) with the model of icebreaking ship Araon. Self-propulsion tests in level ice were performed with three difference model ship speeds. In the model tests, three tactile sensors were installed to measure the spatial distribution of ice load acting at different locations on a model ship, such as the bow and shoulder areas. Variation in the distribution of ice load acting on a model hull with ship speed is discussed.
 Keywords
Ice load;Ship and ice interaction;Tactile sensor;
 Language
Korean
 Cited by
1.
Comparison of the 6-DOF Motion Sensor and Stain Gauge Data for Ice Load Estimation on IBRV ARAON, Journal of the Society of Naval Architects of Korea, 2016, 53, 6, 529  crossref(new windwow)
2.
Ice Load Estimation Procedures for IBRV ARAON by Analyzing Shear Strain Data Measured in Arctic Sea, Journal of Ocean Engineering and Technology, 2016, 30, 6, 468  crossref(new windwow)
 References
1.
Frederking, R., 2004. Ice Pressure Variations during Indentation. Proceedings of the 17th International Association of Hydraulic Engineering and Research (IAHR), 2, pp.307-314.

2.
Izumiyama, K. Wako, D. & Uto, S., 2001. Ice Pressure acting over a Model Ship Hull. Proceedings of the 16th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), 2, Ottawa, 12-17 August 2001, pp.793-802.

3.
Jeong, S.Y. Choi, K. Ha, J.S. Kang, K.J. and Cheon, E.J., 2015. Distribution of ice load acting on model hull due to ship–ice interaction. Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), Trondheim, 14-18 June 2015, pp.1-6.

4.
Lee, T.K. Kim, T.W. Rim, C.W. and Kim, S., 2013. A Study on Calculation of Local Ice Pressures for ARAON Based on Data Measured at Arctic Sea. Journal of Ocean Engineering and Technology, 27(5), pp.88-92. crossref(new window)

5.
Lu, W. Serre, N. Høyland, K. and Evers, K., 2013. Rubble ice transport on arctic offshore structure (RITAS), part IV: tactile sensor measurement of the level ice load on inclined plate. Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), POAC13_087, Espoo, 9-13 June 2013, pp.1-14.

6.
Lubbad, R. & Loset, S., 2011. A numerical model for real-time simulation of ship-ice interaction. Cold Regions Science and Technology, 65, pp.11-127.

7.
Sodhi, D. Takeuchi, T. Kawamura, M. Nakazawa, N. and Akagawa, S., 2001. Measurement of ice forces and interfacial pressure during medium-scale indentation tests. Proceedings of the 16th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), 2, Ottawa, 12-17 August 2001, pp.617–626.

8.
Su, B. Riska, K. and Moan, T., 2010. A Numerical Method for the Prediction of Ship Performance in Level Ice. Cold Regions Science and Technology, 60, pp.177-188. crossref(new window)