JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Estimation of hazard function and hazard change-point for the rectal cancer data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Estimation of hazard function and hazard change-point for the rectal cancer data
Lee, Sieun; Shim, Byoung Yong; Kim, Jaehee;
  PDF(new window)
 Abstract
In this research, we fit various survival models and conduct tests and estimation for the hazard change-point with the rectal cancer data. By the log-rank tests, at significance level , survival functions are significantly different according to the uniporter of glucose (GLUT1), clinical stage (cstage) and pathologic stage (ypstage). From the Cox proportional hazard model, the most significant covariates are GLUT1 and ypstage. Assuming that the rectal cancer data follows the exponential distribution, we estimate one hazard change-point using Matthews and Farewell (1982), Henderson (1990) and Loader (1991) methods.
 Keywords
Censored;Cox proportional hazard model;exponential distribution;hazard change-point;hazard rate function;rectal cancer;survival function;
 Language
Korean
 Cited by
1.
Nonparametric estimation of the discontinuous variance function using adjusted residuals, Journal of the Korean Data and Information Science Society, 2016, 27, 1, 111  crossref(new windwow)
 References
1.
Ahn, J. E. (2010). Statistical analysis of biomedical data using SPSS 18.0, Hannarae Publishing, Seoul.

2.
Collectt, D. (1994). Modelling Survival Data in Medical Research. Chapman & Hall, New York.

3.
Cox, D. R. and Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society. Series B (Methodological), 30, 248-275.

4.
Fleming, T. R. and Harrington, D. P. (1991). Counting processes and survival analysis. Wiley, New York.

5.
Han, M. H. and Jeong, K. M. (1998). Estimation for change-point model of hazard rate. Korean Communications in Statistics, 477-489.

6.
Henderson, R. (1990). A problem with the likelihood ratio test for a change-point hazard rate model. Biometrika, 77, 835-843. crossref(new window)

7.
James, B., James, K. L. and Siegmund, D. (1987). Tests for a change-point, Biometrika, 74, 71-83. crossref(new window)

8.
Jung, S. W., Park, J. Y., Kiim, Y. S., Jeen, Y. T., Lee, H. S., Chun, H. J., Um, S. H., Lee, S. W., Choi, J. H., Kim, C. D., Ryu, H. S. and Hyun, J. H. (2005). Survival analysis according to treatment modality in pancreatic cancer patients. Korean Journal of Gastroenterology, 46, 120-128.

9.
Kim, J. (2009). A change-point estimator with the hazard ratio. Journal of the Korean Statistical Society, 38, 377-382. crossref(new window)

10.
Kim, Y. J. (2013). Survival analysis, Free Academy, Seoul.

11.
Klein, J. P. and Moeschberger, M. L. (1997). Survival analysis, Springer, New York.

12.
Loader, C. R. (1991). Inference for a hazard rate change point. Biometrika, 78, 749-757. crossref(new window)

13.
Maas, M., Nelemans, P. J., Valentini, V., Das, P., Rodel, C., Kuo, L.-J., Calvo, F. A., Garcia-Aguilar, J., Glynne-Jones, R., Haustermans, K., Mohiuddin, M., Pucciarelli, S., William Small, W. Jr., Suarez, J., Theodoropoulos, G., Biondo, S., Beets-Tan, R. G. and Beets, G. L. (2010). Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: A pooled analysis of individual patient data. Lancet Oncology, 11, 835-844. crossref(new window)

14.
Matthews, D. E. and Farewell, V. T. (1982). On testing for constant hazard against a change-point alternative. Biometrics, 38, 463-468. crossref(new window)

15.
Nguyen, H. T., Rogers, G. S. and Walker, E. A. (1984). Estimation in change-point hazard rate models. Biometrika, 71, 299-304. crossref(new window)

16.
Oh, J. S. and Lee, S. Y. (2014). An extension of multifactor dimensionality reduction method for detecting gene-gene interactions with the survival time. Journal of the Korean Data & Information Science Society, 25, 1057-1067. crossref(new window)

17.
Pettit, A. N. (1980). A simple cumulative sum type statistic for the change point problem with zero-one observations. Biometrika, 67, 79-84. crossref(new window)

18.
Seo, M. R., Lee, E. B., Yang, W. S., Kim, S. B., Park, S. K., Lee, S. G., Park, J. S. and Hong, C. G. (2002). Survival analysis of hemodialysis patients - A single center study. Korean Society of Nephrology, 21, 636-644.

19.
Shim, B. Y., Jung, J. H., Lee, K. M., Kim, H. J., Hong, S. H., Kim, S. H., Sun, D. S. and Cho, H. M. (2013). Glucose transporter 1 (GLUT1) of anaerobic glycolysis as laparoscopic surgery for locally advanced rectal cancer. International Journal of Colorectal Disease, 28, 375-383. crossref(new window)

20.
Shin, S. B. and Kim, Y. J. (2014). Statistical analysis of recurrent gap time events with incomplete observation gaps. Journal of the Korean Data & Information Science Society, 25, 327-336. crossref(new window)

21.
Worsley, K. J. (1988). Exact percentage points of the likelihood-ratio test for a change-point hazard-rate model. Biometrika, 44, 259-263.

22.
Yao, Y. C. (1986). Maximum likelihood estimation in hazard rate models with change-point. Communications in Statistics A, 15, 2455-2466. crossref(new window)

23.
Zhang, W., Qian, L. and Li, Y. (2014). Semiparametric sequential testing for multiple change points in piecewise constant hazard functions with long-term survivors. Communications in Statistics - Simulation and Computation, 43, 1685-1699. crossref(new window)