Advanced SearchSearch Tips
Validation of diacylglycerol O-acyltransferase1 gene effect on milk yield using Bayesian regression
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Validation of diacylglycerol O-acyltransferase1 gene effect on milk yield using Bayesian regression
Cho, Kwang-Hyun; Cho, Chung-Il; Park, Kyong-Do; Lee, Joon-Ho;
  PDF(new window)
DGAT1(diacylglycerol O-acyltransferase1) gene is well known as a major gene of milk production in dairy cattle. This study was conducted to investigate how the DGAT1 gene effect on milk yield was appeared from the genome wide association (GWA) using high density whole genome SNP chip. The data set used in this study consisted of 353 Korean Holstein sires with 50k SNP genotypes and deregressed estimated breeding values of milk yield. After quality control 41,051 SNPs were selected and locations on chromosome were mapped using UMD 3.1. Bayesian regression of BayesB method (pi
Bayesian Regression;DGAT1 gene;Holstein;milk yield;SNP;
 Cited by
Boichard, D., Ducrocq V. and Fritz, S. (2015). Sustainable dairy cattle selection in the genomic era. Journal of Animal Breeding and Genetics, 132, 135-143. crossref(new window)

Daetwyler, H. D., Schenkel, F. S., Sargolzaei, M. and Robinson J. A. B. (2008). A Genome scan to setect quantitative trait loci for economically important traits in holstein cattle using two methods and a dense single nucleotide polymorphism map. Journal of Dairy Science, 91, 3225-3236. crossref(new window)

Ding, X., Zhang, Z., Li, X., Wang, S., Wu, X., Sun, D., Yu, Y., Liu, J., Wang, Y., Zhang, Y., Zhang, S., Zhang, Y. and Zhang, Q. (2013). Accuracy of genomic prediction for milk production traits in the Chinese Holstein population using a reference population consisting of cows. Journal of Dairy Science, 96, 5315-5323. crossref(new window)

Garrick, D. J., Taylor, J. F. and Fernando, R. L. (2009) Deregressing estimated breeding values and weighting information for genomic regression analyses. Genetics Selection Evolution, 41, 55-63. crossref(new window)

Gianola, D., de los Campos, G., Hill, W. G. Manfrdi, E. and Fernando, R. (2009). Additive genetic variability and the bayesian alphabet. Genetics, 183, 347-363. crossref(new window)

Grisart, B., Coppieters, W., Farnir, F., Karim, L., Ford, C., Berzi, P., Cambisano, N., Mni, M., Reid, S., Simon, P., Spelman, R., Georges, M. and Snell, R.. (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Research, 12, 222-231. crossref(new window)

Habier, D., Fernando, R. L., Kizilkaya, K. and Garrick, D. J. (2011). Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics, 12, 186-198. crossref(new window)

Hayes, B. J., Bowman, P. J., Chamberlain, A. J. and Goddard, M. E. (2009). Invited review: Genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science, 92, 433-443. crossref(new window)

Hayes, B. J., Pryce, J., Chamberlain, A. J., Bowman, P. J. and Goddard, M. E. (2010). Genetic architecture of complex traits and accuracy of genomic prediction: Coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genetics, 6, e1001139. crossref(new window)

Kemper, K. E., Reich, C. M., Bowman, P. J., Jagt, C. J., Chamberlain, A. J., Mason, B. A., Hayes, B. J. and Goddard, M. E. (2015). Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions. Genetics Selection Evolution, 47, 29-46. crossref(new window)

Mai, M. D., Sahana, G., Christiansen, F. B. and Guldbrandtsen. B. (2014). A genome-wide association study for milk production traits in Danish Jersey cattle using a 50K single nucleotide polymorphism chip. Journal of Animal Science, 88, 3522-3528.

Maxa, J., Neuditschko, M., Russ, I., Forster, M. and Medugorac, I. (2012). Genome-wide association mapping of milk production traits in Braunvieh cattle. Journal of Dairy Science, 88, 3522-3528.

Meredith, B. K., Kearney, F. J., Finlay, E. K., Bradley, D. G., Fahey, A. G., Berry, D. P. and Lynn, D. J. (2012). Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genomics, 13, 21-32. crossref(new window)

Mrode, R., Coffey, M. and Berry, D. P. (2010). Understanding genomic evaluations from various evaluation methods and GMACE. Interbull Bulletin, 42, 52-55.

Oh, D. Y., Yeo, J. S. and Lee, J. Y. (2014). Major SNP identification for oleic acid and marbling score which are associated with Korean cattle. Journal of the Korean Data & Information Science Society, 25, 1011-1024. crossref(new window)

Ostersen, T., Christensen, O. F., Henryon, M., Nielsen, B., Su, G. and Madsen, P. (2011). Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs. Genetics Selection Evolution, 43, 38-44. crossref(new window)

Raven, L., Cocks, B. G. and Hayes, B. J. (2014). Multibreed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle. BMC Genomics, 15, 62-76. crossref(new window)

Saatchi M., Schnabel, R. D., Taylor, J. F. and Garrick, D. J. (2014). Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC Genomics, 15, 442-458. crossref(new window)

Schnabel, R. D., Sonstegard, T. S., Taylor, J. F. and Ashwell M. S. (2005). Whole-genome scan to detect QTL for milk production, conformation, fertility and functional traits in two US Holstein families. Animal Genetics, 36, 408-416. crossref(new window)

Schennink, A., Stoop, W. M., Visker, M. H. P. W., Heck, J. M. L., Bovenhuis, H., van der Poel, J. J., van Valenberg, H. J. F. and van Arendonk,J. A. M. (2007). DGAT1 underlies large genetic variation in milk-fat composition of dairy cows. Animal Genetics, 38, 467-473. crossref(new window)

Seo, S. M., Kim, T. H. and Kim, J. H. (2014). Comparison and analysis of multiple testing methods for microarray gene expression data. Journal of the Korean Data & Information Science Society, 25, 971-986. crossref(new window)

Son, J. Y., Jeong H. J., Yu, S. L., Lee, J. H. Do, C. H., Ryoo, S. H. and Sand, B. C. (2009). Characterization of the DGAT1 gene in the Korean Holstein dairy cattle population. Journal of Agricultural Science, 36, 167-177.

Tiezzi, F. and Maltecca, C. (2015). Accounting for trait architecture in genomic predictions of US Holstein cattle using a weighted realized relationship matrix. Genetics Selection Evolution, 47, 24-37. crossref(new window)

Zhang, Z., Erbe, M., He, J., Ober, U., Gao, N., Zhang, H., Simianer, H. and Li, J. (2015). Accuracy of whole-genome prediction using genetic architecture-enhanced variance-covariance matrix. Genes Genomes Genetics, 5, 615-627.