Advanced SearchSearch Tips
Robust CUSUM test for time series of counts and its application to analyzing the polio incidence data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Robust CUSUM test for time series of counts and its application to analyzing the polio incidence data
Kang, Jiwon;
  PDF(new window)
In this paper, we analyze the polio incidence data based on the Poisson autoregressive models, focusing particularly on change-point detection. Since the data include some strongly deviating observations, we employ the robust cumulative sum (CUSUM) test proposed by Kang and Song (2015) to perform the test for parameter change. Contrary to the result of Kang and Lee (2014), our data analysis indicates that there is no significant change in the case of the CUSUM test with strong robustness and the same result is obtained after ridding the polio data of outliers. We additionally consider the comparison of the forecasting performance. All the results demonstrate that the robust CUSUM test performs adequately in the presence of seemingly outliers.
Minimum density power divergence estimator;Poisson autoregressive model;robust parameter change test;the polio incidence data;
 Cited by
Aue, A. and Horvath, L. (2013). Structural breaks in time series. Journal of Time Series Analysis, 34, 1-16. crossref(new window)

Basu, A., Harris, I. R., Hjort, N. L. and Jones, M. C. (1998). Robust and efficient estimation by minimizing a density power divergence. Biometrika, 85, 549-559. crossref(new window)

Chan, J. and Gupta, A. K. (2000). Parametric Statistical Change Point Analysis, Birkhauser, Boston.

Csorgo, M. and Horvath, L. (1997). Limit theorems in change-point analysis, Wiley, New York.

Davis, R. A., Dunsmuir, W. and Wang, Y. (2000). On autocorrelation in a Poisson regression model. Biometrika, 87, 491-505. crossref(new window)

Doukhan, P., Fokianos, K. and Tjstheim, D. (2012). On weak dependence conditions for Poisson autoregressions. Statistics and Probability Letters, 82, 942-948. crossref(new window)

Doukhan, P. and Kengne, W. (2015). Inference and testing for structural change in general Poisson autoregressive models. Electronic Journal of Statistics, 9, 1267-1314. crossref(new window)

Ferland, R., Latour, A. and Oraichi, D. (2006). Integer-valued GARCH process. Journal of Time Series Analysis, 27, 923-942. crossref(new window)

Fokianos, K. and Fried, R. (2010). Interventions in INGARCH processes. Journal of Time Series Analysis, 31, 210-225. crossref(new window)

Jung, R. C., Kukuk, M. and Liesenfeld, R. (2006). Time series of count data: Modeling, estimation and diagnostics. Computational Statistics and Data Analysis, 51, 2350-2364. crossref(new window)

Jung, R. C. and Tremayne, A. R. (2011). Useful models for time series of counts or simply wrong ones. Advances in Statistical Analysis, 95, 59-91. crossref(new window)

Kang, J. and Lee, S. (2014). Parameter change test for Poisson autoregressive models. Scandinavian Journal of Statistics, 41, 1136-1152. crossref(new window)

Kang, J. and Song, J. (2015). Robust parameter change test for Poisson autoregressive models. Statistics and Probability Letters, 104, 14-21. crossref(new window)

Kitabo, C. A. and Kim, J. (2015). Comparative analysis of Bayesian and maximum likelihood estimators in change point problems with Poisson process. Journal of the Korean Data & Information Science Society, 26, 261-269. crossref(new window)

Lee, J. and Lee, H. (2007). Change point estimators in monitoring the parameters of an AR(1) plus an additional random error model. Journal of the Korean Data & Information Science Society, 18, 963-972.

Lee, S. and Park, S. (2001). The cusum of squares test for scale changes in infinite order moving average processes. Scandinavian Journal of Statistics, 28, 625-644. crossref(new window)

Neumann, M. (2011). Absolute regularity and ergodicity of Poisson count processes. Bernoulli, 17, 1268-1284. crossref(new window)

Park, B. (2002). An outlier robust GARCH model and forecasting volatility of exchange rate returns. Journal of Forecasting, 21, 381-393. crossref(new window)

Tsay, R. S. (1988). Outliers, level shifts, and variance changes in time series. Journal of Forecasting, 7, 1-20. crossref(new window)

Weiss, C. H. (2008). Thinning operations for modeling time series of counts-a survey. Advanced in Statistical Analysis, 92, 319-341. crossref(new window)

Zeger, S. L. (1988). A regression model for time series of counts. Biometrika, 75, 621-629. crossref(new window)