JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Switching properties of bivariate Shewhart control charts for monitoring the covariance matrix
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Switching properties of bivariate Shewhart control charts for monitoring the covariance matrix
Gwon, Hyeon Jin; Cho, Gyo-Young;
  PDF(new window)
 Abstract
A control chart is very useful in monitoring various production process. There are many situations in which the simultaneous control of two or more related quality variables is necessary. We construct bivariate Shewhart control charts based on the trace of the product of the estimated variance-covariance matrix and the inverse of the in-control matrix and investigate the properties of bivariate Shewart control charts with VSI procedure for monitoring covariance matrix in term of ATS (Average time to signal) and ANSW (Average number of switch) and probability of switch, ASI (Average sampling interval). Numerical results show that ATS is smaller than ARL. From examining the properties of switching in changing covariances and variances in , ANSW values show that it does not switch frequently and does not matter to use VSI procedure.
 Keywords
Average run length;average number of switches;average sampling interval;average time to signal;switching property;
 Language
English
 Cited by
 References
1.
Amin, R. W. and Lestinger, W. C. (1991) Improved switching rules in control procedures using variable sampling interval. Communications in Statistics-Simulation and Computation, 20, 205-203. crossref(new window)

2.
Amin, R. W. and Hemasinha, R. (1993). the switching behavior of X charts with variable sampling intervals. Theory and Methods, 22, 2081-2102. crossref(new window)

3.
Arnold, J. C. (1970). A Markovian sampling policy applied to quality monitoring of streams. Biometrics, 26, 739-747. crossref(new window)

4.
Chang, D. J. and Heo S. Y. (2012). Switching properties of CUSUM charts for controlling mean vector. Journal of the korean Data & Information Science Society, 23, 859-866. crossref(new window)

5.
Chang, D. J. and Cho G. Y. (2005). CUSUM charts for monitoring mean vector with variable sampling intervals. Journal of the korean Data Analysis Society, 7, 1133-1143.

6.
Hotelling, H. (1947). Multivariate quality control, techniques of statistical analysis, McGraw-Hill, New York, 111-184.

7.
Jeong, J. I. and Cho G. Y. (2012). Multivariate Shewhart control charts for monitoring the vatiancecovariance matrix. Journal of the Korean Data & Information Science Society, 23, 617-626. crossref(new window)

8.
Reynolds, Jr, M. R. (1989). Optimal two-sided variable sampling interval control charts for the exponential family. Sequential Analysis, 8, 361-379. crossref(new window)

9.
Reynolds, Jr, M. R. (1995). Evaluating properties of variable sampling interval control charts. Sequential Analysis, 14, 59-97. crossref(new window)

10.
Reynolds, Jr, M. R. and Arnold, J. C. (1989). Optimal one-sided Shewhart control charts with variable sampling intervals between samples. Sequential Analysis, 8, 51-77. crossref(new window)

11.
Reynolds, Jr, M. R. and Cho, G. Y. (2006). Multivariate control charts for monitoring the mean vector and covariance Matrix. Journal of Quality Technology, 38, 230-253.

12.
Reynolds, Jr, M. R. and Cho. G. Y. (2011). Multivariate control charts for Monitoring the mean vector and covariance matrix with variable sampling intervals. Sequential Analysis, 30, 1-40. crossref(new window)

13.
Reynolds, Jr, M. R. and Stoumbos, Z. G. (2001). Monitoring the process mean and variance using individual observations and variable sampling intervals. Journal of Quality Technology, 33, 181-205.

14.
Reynolds, Jr, M. R. and Stoumbos, Z. G. (2004a). Control charts and the optimal allocation of sampling resources. Technometrics, 46, 200-214. crossref(new window)

15.
Reynolds, Jr, M. R. and Stoumbos, Z. G. (2004b). Should observations be grouped for effective process monitoring?. Journal of Quality Technology, 36, 343-366.

16.
Smeach, S. C. and Jernigan, R. W. (1977). Further aspects of a Markovian sampling policy for water quality monitoring. Biometrics, 33, 41-46. crossref(new window)