JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Nonparametric estimation of the discontinuous variance function using adjusted residuals
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Nonparametric estimation of the discontinuous variance function using adjusted residuals
Huh, Jib;
  PDF(new window)
 Abstract
In usual, the discontinuous variance function was estimated nonparametrically using a kernel type estimator with data sets split by an estimated location of the change point. Kang et al. (2000) proposed the Gasser- type kernel estimator of the discontinuous regression function using the adjusted observations of response variable by the estimated jump size of the change point in (1992). The adjusted observations might be a random sample coming from a continuous regression function. In this paper, we estimate the variance function using the Nadaraya-Watson kernel type estimator using the adjusted squared residuals by the estimated location of the change point in the discontinuous variance function like Kang et al. (2000) did. The rate of convergence of integrated squared error of the proposed variance estimator is derived and numerical work demonstrates the improved performance of the method over the exist one with simulated examples.
 Keywords
Change point;jump size;kernel function;residual;variance function;
 Language
Korean
 Cited by
 References
1.
Chen, L., Chen, M. and Peng, M. (2009). Conditional variance estimation in heteroscedastic regression models. Journal of Statistical Planning and Inference, 139, 236-245. crossref(new window)

2.
Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika, 73, 625-634. crossref(new window)

3.
Hall, P. and Carroll, R. J. (1989). Variance function estimation in regression: The effect of estimating the mean. Journal of the Royal Statistical Society B, 51, 3-14.

4.
Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika, 77, 521-528. crossref(new window)

5.
Huh, J. (2005). Nonparametric detection of a discontinuity point in the variance function with the second moment function. Journal of the Korean Data & Information Science Society, 16, 591-601.

6.
Huh, J. (2009). Testing a discontinuity point in the log-variance function based on likelihood. Journal of the Korean Data & Information Science Society, 20, 1-9.

7.
Huh, J. (2014). Comparison study on kernel type estimators of discontinuous log-variance. Journal of the Korean Data & Information Science Society, 25, 87-95. crossref(new window)

8.
Huh, J. (2015). Estimation of a change point in the variance function based on the $X^2$-distribution. Communications in Statistics-Theory and Methods, in press.

9.
Kang, K. H. and Huh, J. (2006). Nonparametric estimation of the variance function with a change point. Journal of the Korean Statistical Society, 35, 1-24.

10.
Kang, K. H., Koo, J. Y. and Park, C. W. (2000). Kernel estimation of discontinuous regression functions. Statistics and Probability Letters, 47, 277-285. crossref(new window)

11.
Lee, S., Shim, B. Y. and Kim, J. (2015). Estimation of hazard function and hazard change-point for the rectal cancer data. Journal of the Korean Data & Information Science Society, 26, 1225-1238. crossref(new window)

12.
Mack, Y. P. and Silverman, B. W. (1982). Weak and strong uniform consistency of kernel regression estimates. Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, 61, 405-415. crossref(new window)

13.
Muller, H G. (1992). Change-points in nonparametric regression analysis. The Annals of Statistics, 20, 737-761. crossref(new window)

14.
Muller, H. G. and Stadtmuller, U. (1987). Estimation of heteroscedasticity in regression analysis. The Annals of Statistics, 15, 610-625. crossref(new window)

15.
Rice, J. (1984). Bandwidth choice for nonparametric regression. Annals of Statistics, 12, 1215-1230. crossref(new window)

16.
Ruppert, D., Wand, M. P., Holst, U. and Hossjer, O. (1997). Local polynomial variance-function estimation. Technometrics, 39, 262-273. crossref(new window)

17.
Sohn, S.-Y. and Cho, G.-Y. (2015). A change point estimator in monitoring the parameters of a multivariate IMA(1,1) model. Journal of the Korean Data & Information Science Society, 26, 525-533. crossref(new window)

18.
Yu, K. and Jones, M. C. (2004). Likelihood-based local linear estimation of the conditional variance function. Journal of the American Statistical Association, 99, 139-144. crossref(new window)