JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Multioutput LS-SVR based residual MCUSUM control chart for autocorrelated process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Multioutput LS-SVR based residual MCUSUM control chart for autocorrelated process
Hwang, Changha;
  PDF(new window)
 Abstract
Most classical control charts assume that processes are serially independent, and autocorrelation among variables makes them unreliable. To address this issue, a variety of statistical approaches has been employed to estimate the serial structure of the process. In this paper, we propose a multioutput least squares support vector regression and apply it to construct a residual multivariate cumulative sum control chart for detecting changes in the process mean vector. Numerical studies demonstrate that the proposed multioutput least squares support vector regression based control chart provides more satisfying results in detecting small shifts in the process mean vector.
 Keywords
Autocorrelated process;least squares support vector regression;multioutput regression;multivariate cumulative sum control chart;residual control chart;statistical process;
 Language
English
 Cited by
1.
Deep LS-SVM for regression, Journal of the Korean Data and Information Science Society, 2016, 27, 3, 827  crossref(new windwow)
 References
1.
Callao, M. P. and Rius, A. (2003). Time series: a complementary technique to control charts for monitoring analytical systems. Chemometrics and Intelligent Laboratory Systems, 66, 79-87. crossref(new window)

2.
Chan, L. K. and Li, G. Y. (1994). A multivariate control chart for detecting linear trends. Communications in Statistics: Simulation and Computation, 23, 997-1012.

3.
Dooley, J. and Guo, K. (1992). Identification of change structure in statistical process control. International Journal of Production Research, 30, 1655-1669. crossref(new window)

4.
Harris, T. J. and Ross, W. H. (1991). Statistical process control procedures for correlated observations. Canadian Journal of Chemical Engineering, 69, 48-57. crossref(new window)

5.
Healy, J. D. (1987). A note on multivariate CUSUM procedures. Technometrics, 29, 409-412. crossref(new window)

6.
Hunter, J. S. (1998). The Box-Jenkins manual adjustment chart. Quality Progress, 31, 129-137.

7.
Hwang, H. (2014). Support vector quantile regression for autoregressive data. Journal of the Korean Data & Information Science Society, 25, 1539-1547. crossref(new window)

8.
Hwang, H. (2015). Partially linear support vector orthogonal quantile regression with measurement errors. Journal of the Korean Data & Information Science Society, 26, 209-216. crossref(new window)

9.
Issam, B. K. and Mohamed, L. (2008). Support vector regression based residual MCUSUM control chart for autocorrelated process. Applied Mathematics and Computation, 201, 565-574. crossref(new window)

10.
Jamal, A., Seyed, T. Akhavan, N. and Babak, A. (2007). Artificial neural networks in applying MCUSUM residuals charts for AR(1) processes. Applied Mathematics and Computation, 189, 1889-1901. crossref(new window)

11.
Khediri, I. B. and Limam, M. (2008). Support vector regression based residual MCUSUM control chart for autocorrelated process. Applied Mathematics and Computation, 201, 565-574. crossref(new window)

12.
Khediri, I. B., Weihs, C. and Limam, M. (2010). Support vector regression control charts for multivariate nonlinear autocorrelated processes. Chemometrics and Intelligent Laboratory Systems, 103, 76-81. crossref(new window)

13.
Lawrence, J. (1994). Introduction to Neural Networks, California Scientific Software Press, California.

14.
Lucas, J. M. and Crosier, R. B. (1982). Fast initial response for cumulative sum quality control schemes. Technometrics, 24, 199-205. crossref(new window)

15.
Mercer, J. (1909). Functions of Positive and Negative Type and Their Connection with Theory of Integral Equations. Philosophical transactions of the royal society of London. Series A, containing papers of a mathematical or physical character, 415-446.

16.
Noorossana, R. and Vaghefi, S. J. M. (2006). Effect of autocorrelation on performance of the MCUSUM control chart. Quality and Reliability Engineering International, 22, 191-197. crossref(new window)

17.
Orlando, O., Atienza, L. C. and Tang, B. W. (2002). A CUSUM scheme for autocorrelated observations. Journal of Quality Technology, 34, 187-199.

18.
Seok, K. (2015). Semisupervised support vector quantile regression. Journal of the Korean Data & Information Science Society, 26, 517-524. crossref(new window)

19.
Shim, J. and Hwang, C. (2014).. Support vector quantile regression ensemble with bagging. Journal of the Korean Data & Information Science Society, 25, 677-684. crossref(new window)

20.
Shim, J. and Seok, K. (2014). A transductive least squares support vector machine with the difference convex algorithm. Journal of the Korean Data & Information Science Society, 25, 455-464. crossref(new window)

21.
Smola, A. and Scholkopf, B. (1998). On a kernel-based method for pattern recognition, regression, approximation and operator inversion. Algorithmica, 22, 211-231. crossref(new window)

22.
Snoussi, A., Ghourabi, M. E. and Limam, M. (2005). On SPC for short run autocorrelated data. Communication in Statistics, Simulation and Computation, 34, 219-234. crossref(new window)

23.
Suykens, J. A. K. and Vanderwalle, J. (1999). Least square support vector machine classifier. Neural Processing Letters, 9, 293-300. crossref(new window)

24.
Suykens, J. A. K., Vanderwalle, J. and De Moor, B. (2001). Optimal control by least squares support vector machines. Neural Networks, 14, 23-35. crossref(new window)

25.
Wahba, G. (1990). Spline models for observational data, SIAM, Philadelphia.

26.
Xu, S., An, X., Qiao, X., Zhu, L. and Li, L. (2013). Multi-output least-squares support vector regression machines, Pattern Recognition Letters, 34, 1078-1084. crossref(new window)