Noninformative priors for linear combinations of exponential means

- Journal title : Journal of the Korean Data and Information Science Society
- Volume 27, Issue 2, 2016, pp.565-575
- Publisher : Korean Data and Information Science Society
- DOI : 10.7465/jkdi.2016.27.2.565

Title & Authors

Noninformative priors for linear combinations of exponential means

Lee, Woo Dong; Kim, Dal Ho; Kang, Sang Gil;

Lee, Woo Dong; Kim, Dal Ho; Kang, Sang Gil;

Abstract

In this paper, we develop the noninformative priors for the linear combinations of means in the exponential distributions. We develop the matching priors and the reference priors. The matching priors, the reference prior and Jeffreys` prior for the linear combinations of means are developed. It turns out that the reference prior and Jeffreys` prior are not a matching prior. We show that the proposed matching prior matches the target coverage probabilities much more accurately than the reference prior and Jeffreys` prior in a frequentist sense through simulation study, and an example based on real data is given.

Keywords

Linear combinations of means;matching prior;reference prior;

Language

English

References

1.

Barlow, R. E. and Proschan, F. (1975). Statistical theory of reliability and life testing. Holt, Reinhart and Winston, New York.

2.

Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207.

3.

Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, Oxford University Press, Oxford, 35-60.

4.

Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society B, 41, 113-147.

5.

Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistician, 49, 327-335.

6.

Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion). Journal of Royal Statistical Society B, 49, 1-39.

7.

Datta, G. S. and Ghosh, M. (1995). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357-1363.

8.

Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annal of Statistics, 24, 141-159.

9.

Davis, D. J. (1952). An analysis of some failure data. Journal of the American Statistical Association, 47, 113-150.

10.

DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood. Journal of Royal Statistical Society B, 56, 397-408.

11.

Epstein, B. and Sobel, M. (1953). Life testing. Journal of the American Statistical Association, 48, 486-502.

12.

Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, Oxford University Press, Oxford, 195-210.

13.

Ghosh, M. and Kim, Y. H. (2001). The Behrens-Fisher problem revisited: A Bayesian-frequentist synthesis. The Canadian Journal of Statistics, 29, 5-17.

14.

Kang, S. G. (2013). Noninformative priors for the scale parameter in the generalized Pareto distribution. Journal of the Korean Data & Information Science Society, 24, 1521-1529.

15.

Kang, S. G., Kim, D. H. and Lee, W. D. (2013). Noninformative priors for the ratio of parameters of two Maxwell distributions. Journal of the Korean Data & Information Science Society, 24, 643-650.

16.

Kang, S. G., Kim, D. H. and Lee, W. D. (2014). Noninformative priors for the log-logistic distribution. Journal of the Korean Data & Information Science Society, 25, 227-235.

17.

Kim, D. H., Kang, S. G. and Lee, W. D. (2006). Noninformative priors for linear combinations of the normal means. Statistical Paper, 47, 249-262.

18.

Lawless, J. F. (2003). Statistical models and methods for lifetime data, John Wiley and Sons, New York.

19.

Li, H. and Stern, H. S. (1997). Bayesian inference for nested designs based on Jeffreys's prior. The American Statistician, 51, 219-224.

20.

Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter : Higher order asymptotics. Biometrika, 80, 499-505.

21.

Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975.

22.

Saraccoglu1, B., Kinaci, I. and Kundu, D. (2012). On estimation of R = P(Y < X) for exponential distribution under progressive type-II censoring. Journal of Statistical Computation and Simulation, 82, 729-744.

23.

Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics, Banach Center Publications, 16, 485-514.

24.

25.

Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihood. Journal of Royal Statistical Society B, 25, 318-329.

26.

Xia, Z. P., Yu, J. Y., Cheng, L. D., Liu, L. F, and Wang, W. M. (2009). Study on the breaking strength of jute fibers using modified Weibull distribution. Journal of Composites Part A: Applied Science and Manufacturing, 40, 54-59.