Advanced SearchSearch Tips
Run related probability function and their application to start-up demonstration tests
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Run related probability function and their application to start-up demonstration tests
Bi, Yi-Ming; Oh, Jung-Taek; Cho, Gyo-Young;
  PDF(new window)
A start-up demonstration test is a mechanism that is usually used to determine the reliability of equipment, for example water pumps, car batteries and power generators. The simplest and oldest start-up demonstration tests are called CS (consecutive successes) which have been studied by Hahn and Gage (1983), Viveros and Balakrishnan (1993).At first Hahn and Gage (1983) discussed the start-up demonstration test. I was based on i.i.d (independently and identically distributed) binary outcomes with the specified number of consecutive successful start-ups. Oh (2016) studied CSNCF (consecutive successful, but not consecutive failures). In this paper, we investigated the CS and CSNCF models, also their applications to start-up demonstration tests. The numerical results showed that the expectations and variances of the total number of attempted start-ups until the acceptance of the unit are gradually increasing in all of the specified number of successes as the p (probability of a successful start-up in an single trial) decreases from 0.99 to 0.90. The difference between means of the CS mode and CSNCF model is small, but variances of the CS and CSNCF are big.
CS;CSNCF;geometric distribution of order k;runs;start-updemonstration tests;
 Cited by
Balakrishnan, N., Balasubramanian, K. and Viveros, R. (1995). Start-up demonstration tests under corre-lation and corrective action. Naval Research Logistics, 42, 1271-1276.

Balakrishnan, N., Mohanty, S. G. and Aki, S. (1997). Start-up demonstration tests under Markov dependence model with corrective actions. Annals of the Institute of Statistical Mathematics, 49, 155-169. crossref(new window)

Feller, W. (1968). An introduction to probability theory and Its applications, 3rd Ed., John Wiley & Sons, New York.

Hahn, G. J. and Gage, J. B. (1983). Evaluation of a start-up demonstration test. Journal of Quality Technology, 15, 103-106. crossref(new window)

Kolev, N. W. and Minkova, L. D. (1997). Discrete distributions related to success runs of length K in a multi-state Markov-chain. Communications in Statistics-Theory and Methods, 26, 1031-1049. crossref(new window)

Muselli, M. (1996). Simple expressions for success run distributions in Bernoulli trials. Statistics & Proba-bility Letters, 31, 121-128. crossref(new window)

Oh, J. T. (2016). Modified geometric distribution of order k. Preprint.

Philippou, A. N. and Muwafi, A. A. (1982). Waiting for the k-th consecutive success and the Fibonacci sequence of order k. The Fibonacci Quarterly, 20, 28-32.

Todhunter, I. (1865). A history of the mathematical theory of probability from the time of Pascal to that of laplace, Macmillan, London, Reprinted by Chelsea Publishing Company, New York, 1949.

Uppuluri, V. R. R. and Patil, S. A. (1983).Waiting times and generalized Fibonacci sequences. The Fibonacci Quarterly, 21, 242-249.

Viveros, R. and Balakrishnan, N. (1993). Statistical inference from start-up demonstration test data. Journal of Quality Technology, 25, 119-130. crossref(new window)