JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Emergence of CTX-M-15 Extended Spectrum β-lactamase and ArmA-Producing Enterobacter cloacae
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Digital Convergence
  • Volume 13, Issue 12,  2015, pp.313-318
  • Publisher : The Society of Digital Policy and Management
  • DOI : 10.14400/JDC.2015.13.12.313
 Title & Authors
Emergence of CTX-M-15 Extended Spectrum β-lactamase and ArmA-Producing Enterobacter cloacae
Sung, Ji-Youn;
  PDF(new window)
 Abstract
We investigated the prevalence of extended spectrum -lactamase (ESBL) genes and 16S rRNA methyltransferase genes to study antimicrobial resistance mechanisms of Enterobacter cloacae strains isolated from a university hospital in the Chungcheong province of Korea. Eight of the bacteria strains involved in this study contained CTX-M-15 type ESBL. Among 8 strains harboring the ESBL gene, 3 strains also harbored armA gene. The three isolates showed resistance to antimicrobial agents belonged to third cephalosporin, aminoglycoside, and fluoroquinolones. Furthermore, interspecies plasmid transfer of the antimicrobial resistant genes may induced horizontal spreading of the genes and emergence of multidrug resistant bacteria. Therefore, surveillance for existence of antimicrobial resistance determinants is important to prevent distribution of antimicrobial resistant strains.
 Keywords
Enterobacter cloacae;ESBL;antimicrobial agents;16S rRNA methyltransferase;CTX-M-15;
 Language
Korean
 Cited by
 References
1.
S. Abbott, Manual of Clinical Microbiology. p.475-482, American Society for Microbiology, 1999.

2.
D. L. Paterson, and R. A. Bonomo, Extended-spectrum ${\beta}$-lactamases: a clinical update. Clin Microbiol Rev, Vol. 18, pp.657-686, 2005. crossref(new window)

3.
J. P. Folster, R. Rickert, E. J. Barzilay, and J. M. Whichard, Identification of the Aminoglycoside Resistance Determinants armA and rmtC among Non-Typhi Salmonella Isolates from Humans in the United States. Antimicrob Agents Chemother, Vol. 53, pp.4563-4564, 2009. crossref(new window)

4.
L. Ma, C. J. Lin, J. H. Chen, C. P. Fung, and F. Y. Chang, Widespread Dissemination of Aminoglycoside Resistance Genes armA and rmtB in Klebsiella pneumoniae Isolates in Taiwan Producing CTX-M-Type Extended-Spectrum ${\beta}$-Lactamases. Antimicrob Agents Chemother, Vol. 53, pp.104- 111, 2009. crossref(new window)

5.
CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement. CLSI document M100-S20. p.52-53, Clinical and Laboratory Standards Institute, 2010.

6.
L. M. Li, S. J. Jan, I. K. Bae, G. Park, Y. S. Kim, and J. H. Shin, Frequency of Extended-spectrum ${\beta}$-lactamase (ESBL) and AmpC ${\beta}$-lactamase Genes in Escherichia coli and Klebsiella pneumoniae over a Three-year Period in a University Hospital in Korea. Korean J Lab Med, Vol. 30 pp.616-623, 2010. crossref(new window)

7.
P. Bogaerts, M. Galimand, C. Bauraing, A. Deplano, R. Vanhoof, and R. De Mendonca, Emergence of ArmA and RmtB aminoglycoside resistance 16S rRNA methylases in Belgium. J Antimicrob Chemother, Vol. 59, pp.459-464, 2007. crossref(new window)

8.
D. M. Livermore. ${\beta}$-Lactamases in laboratory and clinical? resistance. Clin Microbioal Rev, Vol. 8, pp.557-584, 1995.

9.
S. G. Hong, S. J. Kim, S. H. Jeong, C. H. Chang, S. R. Cho, and J. Y. Ahn, Prevalence and diversity of extened-spectrum ${\beta}$-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J Clin Microbiol, Vol. 6, pp149-155, 2003.

10.
J. D. Pitout, and K. B. Laupland. Extended-spectrum beta-lactamase producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis, Vol. 8 pp.159-166, 2008. crossref(new window)

11.
K. S. Ko, M. Y. Lee, J. H. Song, H. Lee, D. S. Jung, and S. I. Jung, Prevalence and characterization of extended-spectrum ${\beta}$-lactamase-producing Enterobacteriaceae isolated in Korean hospitals. Diagn Microbiol Infect Dis, Vol. 61, pp.453-459, 2008. crossref(new window)

12.
Y. Park, H. K. Kang, I. K. Bae, J. Kim, J. S. Kim, and Y. Uh. Prevalence of the extended-spectrum ${\beta}$-lactamase and qnr genes in clinical isolates of Escherichia coli. Korean J Lab Med, Vol. 29, pp.218-223, 2009. crossref(new window)

13.
W. H. Sheng, R. E. Badal, P. R. Hsueh, and SMART Program. Distribution of Extended-Spectrum ${\beta}$-Lactamases, AmpC-Lactamases, and Carbapenemases among Enterobacteriaceae Isolates Causing Intra-Abdominal Infections in the Asia-Pacific Region: Results of the Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob Agents Chemother, Vol. 57, No. 7, pp. 2981-2988, 2013. crossref(new window)

14.
H. Lee, E. M. Koh, C. K. Kim, J. H. Yum, K. Lee, and Y. Chong, Molecular and Phenotypic Characteristics of 16S rRNA Methylase-producing Gram-negative Bacilli. Korean J Clin Microbiol, Vol. 13, No. 1, pp.19-26, 2010. crossref(new window)

15.
M. Golebiewski, Kern-Zdanowicz, M. Zienkiewicz, M. Adamczyk, J. Zylinska, A. Baraniak, M. Gniadkowski, J. Bardowski, and P. Ceglowski. Complete nucleotide sequence of the pCTX-M3 plasmid and its involvement in spread of the extended-spectrum beta-lactamase gene $bla_{CTX-M-3}$. Antimicrob Agents Chemother, Vol. 51, No. 11, pp.3789-3795, 2007. crossref(new window)

16.
J. J. Yan, J. J. Wu, W. C. Ko, S. H. Tsai, C. L. Chuang, and H. M. Wu, Plasmidmediated 16S rRNA methylase conferring high-level aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae isolates from two Taiwanese hospitals. J Antimicrobial Chemother, Vol. 54 pp.1007-1012, 2004. crossref(new window)

17.
M. H. Kim, J. Y. Sung, J. W. Park, G. C. Kwon, and S. H. Koo. Coproduction of qnrB and armA from Extended-Spectrum ${\beta}$-lactamase-producing Klebsiella pneumoniae. Korean J Lab Med, Vol. 27, pp.428-436, 2007. crossref(new window)