JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Analysis and Verification of High Temperature Heat Pump Dryer using Waste Heat Recovery Type for R245fa Refrigerant
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis and Verification of High Temperature Heat Pump Dryer using Waste Heat Recovery Type for R245fa Refrigerant
Bae, Kyung-Jin; Cha, Dong-An; Kwon, Oh-Kyung;
  PDF(new window)
 Abstract
In this study, the performance characteristics of a high temperature heat pump dryer that is able to raise the air temperature up to by using waste heat as heat source were investigated numerically. The main components of the heat pump dryer were modeling as a compressor, condenser, evaporator and expansion device, and R245fa was selected as refrigerant. Experiments were also conducted to validate the numerical data. As a result, when the evaporator air inlet temperature increased from to , the numerical results of the hot air temperature at outlet and heat pump COP were about 8~11% and 5~8% higher than that of experimental ones, respectively.
 Keywords
Dryer;Heat Pump;R245fa;Waste Heat Recovery;
 Language
Korean
 Cited by
 References
1.
S. Prasertsan, P. Saen-Saby, G. Prateepchaikul and P. Ngamsritrakul, 1996, "Effects of Product Drying Rate and Ambient Condition on the Operating Modes of Heat Pump Dryer", Proc. of 10th International Drying Symposium, Vol. A, pp. 529-534.

2.
K. J. Bae, D. A. Cha and O. K. Kwon, 2014, "Performance Characteristic of Large Diameter Oval Finned-Tube Heat Exchanger for Dryer", Journal of the Korea Society for Power System Engineering, Vol. 18, No. 5, pp. 22-27.

3.
M. Chamoun, R. Rulliere, P. Haberschill and J. L. Peureux, 2014, "Experimental and Numerical Investigations of a New High Temperature Heat Pump for Industrial Heat Recovery using Water as Refrigerant", International Journal of Refrigeration, Vol. 44, pp. 177-188. crossref(new window)

4.
X. Q. Cao, W. W. Yang, F. Zhou and Y. L. He, 2014, "Performance Analysis of Different High-temperature Heat Pump Systems for Low-grade Waste Heat Recovery", Applied Thermal Engineering, Vol. 71, pp. 291-300. crossref(new window)

5.
X. Wu, Z. Xing, Z. He, X. Wang and W. Chen, 2016, "Performance evaluation of a capacity-regulated high temperature heat pump for waste heat recovery in dyeing industry", Applied Thermal Engineering, Vol. 93, pp. 1193-1201. crossref(new window)

6.
V. Gnielinski, 1976, "New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow", International Chemical Engineering, Vol. 16, No. 2, pp. 359-368.

7.
F. W. Dittus and L. M. K. Boelter, 1930, "Heat Transfer in Automobile Radiations of the Tubular Type", University of California Publications in Engineering, Vol. 2, pp. 443-461.

8.
A. Cavallini, L. Doretti, N. Klammsteiner, G. A. Longo and L. Rossetto, 1995, "Condensation of New Refrigerants inside Smooth and Enhanced Tubes", 19th International Congress of Refrigeration, pp. 105-114.

9.
M. M. Shah, 1976, "A New Correlation for Heat Transfer during Boiling Flow through Pipes", ASHRAE Trans., Vol. 82. pp. 66-86.

10.
C. C. Wang, W. S. Lee and W. J. Sheu, 2001, "A Comparative Study of Compact Enhanced Fin-and-tube Heat Exchanger", Internation Journal of Heat and Mass Transfer, Vol. 44, pp. 3565-3573. crossref(new window)