Advanced SearchSearch Tips
Autophagy in Ischemic Livers: A Critical Role of Sirtuin 1/Mitofusin 2 Axis in Autophagy Induction
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Toxicological Research
  • Volume 32, Issue 1,  2016, pp.35-46
  • Publisher : The Korean Society of Toxicology
  • DOI : 10.5487/TR.2016.32.1.035
 Title & Authors
Autophagy in Ischemic Livers: A Critical Role of Sirtuin 1/Mitofusin 2 Axis in Autophagy Induction
Chun, Sung Kook; Go, Kristina; Yang, Ming-Jim; Zendejas, Ivan; Behrns, Kevin E.; Kim, Jae-Sung;
  PDF(new window)
No-flow ischemia occurs during cardiac arrest, hemorrhagic shock, liver resection and transplantation. Recovery of blood flow and normal physiological pH, however, irreversibly injures the liver and other tissues. Although the liver has the powerful machinery for mitochondrial quality control, a process called mitophagy, mitochondrial dysfunction and subsequent cell death occur after reperfusion. Growing evidence indicates that reperfusion impairs mitophagy, leading to mitochondrial dysfunction, defective oxidative phosphorylation, accumulation of toxic metabolites, energy loss and ultimately cell death. The importance of acetylation/deacetylation cycle in the mitochondria and mitophagy has recently gained attention. Emerging data suggest that sirtuins, enzymes deacetylating a variety of target proteins in cellular metabolism, survival and longevity, may also act as an autophagy modulator. This review highlights recent advances of our understanding of a mechanistic correlation between sirtuin 1, mitophagy and ischemic liver injury.
 Cited by
Shedding New Lights with the Breakthrough Ideas to Understand Current Trends in Modern Toxicology, Toxicological Research, 2016, 32, 1, 1  crossref(new windwow)
Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway, Drug Development Research, 2016  crossref(new windwow)
Mizushima, N., Levine, B., Cuervo, A.M. and Klionsky, D.J. (2008) Autophagy fights disease through cellular self-digestion. Nature, 451, 1069-1075. crossref(new window)

Mizushima, N. and Klionsky, D.J. (2007) Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr., 27, 19-40. crossref(new window)

Lemasters, J.J. (2014) Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol., 2, 749-754. crossref(new window)

Cursio, R., Colosetti, P. and Gugenheim, J. (2015) Autophagy and liver ischemia-reperfusion injury. Biomed Res Int., 2015, 417590.

Kim, J.S., Nitta, T., Mohuczy, D., O'Malley, K.A., Moldawer, L.L., Dunn, W.A. Jr. and Behrns, K.E. (2008) Impaired autophagy: A mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology, 47, 1725-1736. crossref(new window)

Blumgart, L.H. and Hann, L.E. (2012) Surgical and Radiological Anatomy of the Liver, Biliary Tract and Pancreas, Blumgart's Surgery of the Liver, Biliary tract and Pancreas (5th Edition). Elsevier, Philadelphia, pp. 31.

Arias, I.M., Alter, H.J, Boyer, J.L., Cohen, D.E., Fausto, N., Shafritz, D.A. and Wolkoff, A.W. (2009) The liver: Biology and pathobiology (5th Edition). Wiley-Blackwell, New Jersey.

Bradley, S.E., Ingelfinger, F.J., Bradley, G.P. and Curry, J.J. (1945) The estimation of hepatic blood flow in man. J. Clin. Invest., 24, 890-897. crossref(new window)

Bradford, B.U., Marotto, M., Lemasters, J.J. and Thurman, R.G. (1986) New, simple models to evaluate zone-specific damage due to hypoxia in the perfused rat liver: time course and effect of nutritional state. J. Pharmacol. Exp. Ther., 236, 263-268.

Malhi, H., Gores, G.J. and Lemasters, J.J. (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology, 43, S31-44. crossref(new window)

World Health Organization (WHO). (2013) Study of liver disease mortality.

Mokdad, A.A., Lopez, A.D., Shahraz, S., Lozano, R., Mokdad, A.H., Stanaway, J., Murray, C.J. and Naghavi, M. (2014) Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. BMC Med., 12, 145. crossref(new window)

Tang, L., Tian, F., Tao, W. and Cui, J. (2007) Hepatocellular glycogen in alleviation of liver ischemia-reperfusion injury during partial hepatectomy. World J. Surg., 31, 2039-2043. crossref(new window)

Lemasters, J.J., Caldwell-Kenkel, J.C., Gao, W., Nieminen, A.L., Herman, B. and Thurman, R.G. (1992) Hypoxic, ischemic and reperfusion injury in the liver in Pathophysiology of Reperfusion Injury (Das, D.K. edition). CRC, Florida, pp. 101-135.

Bronk, S.F. and Gores, G.J. (1991) Efflux of protons from acidic vesicles contributes to cytosolic acidification of hepatocytes during ATP depletion. Hepatology, 14, 626-633. crossref(new window)

Kim, J.S., He, L. and Lemasters, J.J. (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun., 304, 463-470. crossref(new window)

United Network for Organ Sharing (UNOS). (2014).

Kim, J.S., Qian, T. and Lemasters, J.J. (2003) Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology, 124, 494-503. crossref(new window)

Leung, A.W. and Halestrap, A.P. (2008) Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim. Biophys. Acta, 1777, 946-952. crossref(new window)

Hausenloy, D., Wynne, A., Duchen, M. and Yellon, D. (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation, 109, 1714-1717. crossref(new window)

He, L. and Lemasters, J.J. (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett., 512, 1-7. crossref(new window)

Akhtar, M.Z., Henderson, T., Sutherland, A., Vogel, T. and Friend, P.J. (2013) Novel approaches to preventing ischemiareperfusion injury during liver transplantation. Transplant. Proc., 45, 2083-2092. crossref(new window)

Yamashita, Y., Shimada, M., Hamatsu, T., Rikimaru, T., Tanaka, S., Shirabe, K. and Sugimachi, K. (2001) Effects of preoperative steroid administration on surgical stress in hepatic resection: prospective randomized trial. Arch. Surg., 136, 328-333. crossref(new window)

Pan, L.J., Zhang, Z.C., Zhang, Z.Y., Wang, W.J., Xu, Y. and Zhang, Z.M. (2012) Effects and mechanisms of store-operated calcium channel blockade on hepatic ischemia-reperfusion injury in rats. World J. Gastroenterol., 18, 356-367. crossref(new window)

Gurusamy, K.S., Gonzalez, H.D. and Davidson, B.R. (2010) Current protective strategies in liver surgery. World J. Gastroenterol., 16, 6098-6103. crossref(new window)

Uchida, M., Takemoto, Y., Nagasue, N., Dhar, D.K., Kohno, H. and Nakamura, T. (1994) Effect of verapamil on hepatic reperfusion injury after prolonged ischemia in pigs. J. Hepatol., 21, 217-223. crossref(new window)

Kon, K., Kim, J.S., Jaeschke, H. and Lemasters, J.J. (2004) Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology, 40, 1170-1179. crossref(new window)

Kim, J.S., Jin, Y. and Lemasters, J.J. (2006) Reactive oxygen species, but not $Ca^{2+}$ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol., 290, H2024-H2034. crossref(new window)

Klionsky, D.J. (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 8, 931-937. crossref(new window)

Codogno, P., Mehrpour, M. and Proikas-Cezanne, T. (2011) Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol., 13, 7-12. crossref(new window)

Dunn, W.A. Jr., Cregg, J.M., Kiel, J.A., van der Klei, I.J., Oku, M., Sakai, Y., Sibirny, A.A., Stasyk, O.V. and Veenhuis, M. (2005) Pexophagy: the selective autophagy of peroxisomes. Autophagy, 1, 75-83. crossref(new window)

Kraft, C., Deplazes, A., Sohrmann, M. and Peter, M. (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol., 10, 602-610. crossref(new window)

Hamasaki, M., Noda, T., Baba, M. and Ohsumi, Y. (2005) Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic, 6, 56-65. crossref(new window)

Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M. and Czaja, M.J. (2009) Autophagy regulates lipid metabolism. Nature, 458, 1131-1135. crossref(new window)

Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W. and Kimmelman, A.C. (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature, 509, 105-109. crossref(new window)

Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., Sardiello, M., Rubinsztein, D.C. and Ballabio, A. (2011) TFEB links autophagy to lysosomal biogenesis. Science, 332, 1429-1433. crossref(new window)

Rabinowitz, J.D. and White, E. (2010) Autophagy and metabolism. Science, 330, 1344-1348. crossref(new window)

Kim, J., Kundu, M., Viollet, B. and Guan, K.L. (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 13, 132-141. crossref(new window)

Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S., Natsume, T., Takehana, K., Yamada, N., Guan, J.L., Oshiro, N. and Mizushima, N. (2009) Nutrientdependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell, 20, 1981-1991. crossref(new window)

Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J.L. and Mizushima, N. (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol., 181, 497-510. crossref(new window)

Jung, C.H., Seo, M., Otto, N.M. and Kim, D.H. (2011) ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy, 7, 1212-1221. crossref(new window)

Dai, D.F., Johnson, S.C., Villarin, J.J., Chin, M.T., Nieves-Cintron, M., Chen, T., Marcinek, D.J., Dorn, G.W., Kang, Y.J., Prolla, T.A., Santana, L.F. and Rabinovitch, P.S. (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ. Res., 108, 837-846. crossref(new window)

Wei, Y., Pattingre, S., Sinha, S., Bassik, M. and Levine, B. (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell, 30, 678-688. crossref(new window)

Russell, R.C., Tian, Y., Yuan, H., Park, H.W., Chang, Y.Y., Kim, J., Kim, H., Neufeld, T.P., Dillin, A. and Guan, K.L. (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol., 15, 741-750. crossref(new window)

Backer, J.M. (2008) The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem. J., 410, 1-17.

Obara, K. and Ohsumi, Y. (2011) Atg14: a key player in orchestrating autophagy. Int. J. Cell Biol., 2011, 713435.

Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B.H. and Jung, J.U. (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol., 8, 688-699. crossref(new window)

Takahashi, Y., Coppola, D., Matsushita, N., Cualing, H.D., Sun, M., Sato, Y., Liang, C., Jung, J.U., Cheng, J.Q., Mule, J.J., Pledger, W.J. and Wang, H.G. (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol., 9, 1142-1151. crossref(new window)

Itakura, E., Kishi, C., Inoue, K. and Mizushima, N. (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell, 19, 5360-5372. crossref(new window)

Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., Maejima, I., Shirahama-Noda, K., Ichimura, T., Isobe, T., Akira, S., Noda, T. and Yoshimori, T. (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol., 11, 385-396. crossref(new window)

Mizushima, N., Yoshimori, T. and Ohsumi, Y. (2011) The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol., 27, 107-132. crossref(new window)

Ravikumar, B., Sarkar, S., Davies, J.E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z.W., Jimenez-Sanchez, M., Korolchuk, V.I., Lichtenberg, M., Luo, S., Massey, D.C., Menzies, F.M., Moreau, K., Narayanan, U., Renna, M., Siddiqi, F.H., Underwood, B.R., Winslow, A.R. and Rubinsztein, D.C. (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev., 90, 1383-1435. crossref(new window)

Mizushima, N., Yoshimori, T. and Levine, B. (2010) Methods in mammalian autophagy research. Cell, 140, 313-326. crossref(new window)

Levine, B. and Klionsky, D.J. (2004) Development by selfdigestion: molecular mechanisms and biological functions of autophagy. Dev. Cell, 6, 463-477. crossref(new window)

Chua, C.E., Gan, B.Q. and Tang, B.L. (2011) Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation. Cell. Mol. Life Sci., 68, 3349-3358. crossref(new window)

Ao, X., Zou, L. and Wu, Y. (2014) Regulation of autophagy by the Rab GTPase network. Cell Death Differ., 21, 348-358. crossref(new window)

Moreau, K., Renna, M. and Rubinsztein, D.C. (2013) Connections between SNAREs and autophagy. Trends Biochem. Sci., 38, 57-63. crossref(new window)

Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M., Parlati, F., Sollner, T.H. and Rothman, J.E. (1998) SNAREpins: minimal machinery for membrane fusion. Cell, 92, 759-772. crossref(new window)

Menzies, R.A. and Gold, P.H. (1971) The turnover of mitochondria in a variety of tissues of young adult and aged rats. J. Biol. Chem., 246, 2425-2429.

Deas, E., Plun-Favreau, H., Gandhi, S., Desmond, H., Kjaer, S., Loh, S.H., Renton, A.E., Harvey, R.J., Whitworth, A.J., Martins, L.M., Abramov, A.Y. and Wood, N.W. (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet., 20, 867-879. crossref(new window)

Geisler, S., Holmstrom, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J. and Springer, W. (2010) PINK1/Parkinmediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol., 12, 119-131. crossref(new window)

Michiorri, S., Gelmetti, V., Giarda, E., Lombardi, F., Romano, F., Marongiu, R., Nerini-Molteni, S., Sale, P., Vago, R., Arena, G., Torosantucci, L., Cassina, L., Russo, M.A., Dallapiccola, B., Valente, E.M. and Casari, G. (2010) The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ., 17, 962-974. crossref(new window)

Okatsu, K., Oka, T., Iguchi, M., Imamura, K., Kosako, H., Tani, N., Kimura, M., Go, E., Koyano, F., Funayama, M., Shiba-Fukushima, K., Sato, S., Shimizu, H., Fukunaga, Y., Taniguchi, H., Komatsu, M., Hattori, N., Mihara, K., Tanaka, K. and Matsuda, N. (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun., 3, 1016. crossref(new window)

Kirkin, V., McEwan, D.G., Novak, I. and Dikic, I. (2009) A role for ubiquitin in selective autophagy. Mol. Cell, 34, 259-269. crossref(new window)

Narendra, D., Tanaka, A., Suen, D.F. and Youle, R.J. (2009) Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy, 5, 706-708. crossref(new window)

Feng, D., Liu, L., Zhu, Y. and Chen, Q. (2013) Molecular signaling toward mitophagy and its physiological significance. Exp. Cell Res., 319, 1697-1705. crossref(new window)

Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., Ma, Q., Zhu, C., Wang, R., Qi, W., Huang, L., Xue, P., Li, B., Wang, X., Jin, H., Wang, J., Yang, F., Liu, P., Zhu, Y., Sui, S. and Chen, Q. (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol., 14, 177-185. crossref(new window)

Wu, W., Tian, W., Hu, Z., Chen, G., Huang, L., Li, W., Zhang, X., Xue, P., Zhou, C., Liu, L., Zhu, Y., Zhang, X., Li, L., Zhang, L., Sui, S., Zhao, B. and Feng, D. (2014) ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep., 15, 566-575. crossref(new window)

Chen, M., Sandoval, H. and Wang, J. (2008) Selective mitochondrial autophagy during erythroid maturation. Autophagy, 4, 926-928. crossref(new window)

Sandoval, H., Thiagarajan, P., Dasgupta, S.K., Schumacher, A., Prchal, J.T., Chen, M. and Wang, J. (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature, 454, 232-235. crossref(new window)

Wang, J.H., Ahn, I.S., Fischer, T.D., Byeon, J.I., Dunn, W.A. Jr., Behrns, K.E., Leeuwenburgh, C. and Kim, J.S. (2011) Autophagy suppresses age-dependent ischemia and reperfusion injury in livers of mice. Gastroenterology, 141, 2188-2199. crossref(new window)

Kim, J.S., Wang, J.H., Biel, T.G., Kim, D.S., Flores-Toro, J.A., Vijayvargiya, R., Zendejas, I. and Behrns, K.E. (2013) Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers. Toxicol. Appl. Pharmacol., 273, 600-610. crossref(new window)

Pacher, P. and Hajnoczky, G. (2001) Propagation of the apoptotic signal by mitochondrial waves. EMBO J., 20, 4107-4121. crossref(new window)

Choudhary, C., Weinert, B.T., Nishida, Y., Verdin, E. and Mann, M. (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol., 15, 536-550.

Lee, K.K. and Workman, J.L. (2007) Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell Biol., 8, 284-295. crossref(new window)

Haigis, M.C. and Guarente, L.P. (2006) Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev., 20, 2913-2921. crossref(new window)

North, B.J. and Verdin, E. (2004) Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol., 5, 224. crossref(new window)

Michan, S. and Sinclair, D. (2007) Sirtuins in mammals: insights into their biological function. Biochem. J., 404, 1-13. crossref(new window)

Houtkooper, R.H., Pirinen, E. and Auwerx, J. (2012) Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol., 13, 225-238. crossref(new window)

Anderson, K.A., Green, M.F., Huynh, F.K., Wagner, G.R. and Hirschey, M.D. (2014) SnapShot: Mammalian Sirtuins. Cell, 159, 956. crossref(new window)

Finnin, M.S., Donigian, J.R. and Pavletich, N.P. (2001) Structure of the histone deacetylase SIRT2. Nat. Struct. Biol., 8, 621-625. crossref(new window)

Min, J., Landry, J., Sternglanz, R. and Xu, R.M. (2001) Crystal structure of a SIR2 homolog-NAD complex. Cell, 105, 269-279. crossref(new window)

Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J.M., Madeo, F. and Kroemer, G. (2015) Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab., 21, 805-821. crossref(new window)

Marino, G., Pietrocola, F., Eisenberg, T., Kong, Y., Malik, S.A., Andryushkova, A., Schroeder, S., Pendl, T., Harger, A., Niso-Santano, M., Zamzami, N., Scoazec, M., Durand, S., Enot, D.P., Fernandez, A.F., Martins, I., Kepp, O., Senovilla, L., Bauvy, C., Morselli, E., Vacchelli, E., Bennetzen, M., Magnes, C., Sinner, F., Pieber, T., Lopez-Otin, C., Maiuri, M.C., Codogno, P., Andersen, J.S., Hill, J.A., Madeo, F. and Kroemer, G. (2014) Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell, 53, 710-725. crossref(new window)

Lombard, D.B., Tishkoff, D.X. and Bao, J. (2011) Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation in Histone Deacetylases: the Biology and Clinical Implication (Yao, T.P. and Seto, E. Edition). Springer, Heidelberg, pp. 163-188.

Satoh, A., Stein, L. and Imai, S. (2011) The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity in Histone Deacetylases: the Biology and Clinical Implication (Yao, T.P. and Seto, E. Edition). Springer, Heidelberg, pp. 126-163.

Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. and Horio, Y. (2007) Nucleocytoplasmic shuttling of the $NAD^+$-dependent histone deacetylase SIRT1. J. Biol. Chem., 282, 6823-6832.

Asher, G., Gatfield, D., Stratmann, M., Reinke, H., Dibner, C., Kreppel, F., Mostoslavsky, R., Alt, F.W. and Schibler, U. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell, 134, 317-328. crossref(new window)

Belden, W.J. and Dunlap, J.C. (2008) SIRT1 is a circadian deacetylase for core clock components. Cell, 134, 212-214. crossref(new window)

Nakahata, Y., Kaluzova, M., Grimaldi, B., Sahar, S., Hirayama, J., Chen, D., Guarente, L.P. and Sassone-Corsi, P. (2008) The $NAD^+$-dependent deacetylase SIRT1 modulates CLOCKmediated chromatin remodeling and circadian control. Cell, 134, 329-340. crossref(new window)

Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W. and Finkel, T. (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. U.S.A., 105, 3374-3379. crossref(new window)

Hariharan, N., Maejima, Y., Nakae, J., Paik, J., Depinho, R.A. and Sadoshima, J. (2010) Deacetylation of FoxO by Sirt1 Plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ. Res., 107, 1470-1482. crossref(new window)

Fang, E.F., Scheibye-Knudsen, M., Brace, L.E., Kassahun, H., SenGupta, T., Nilsen, H., Mitchell, J.R., Croteau, D.L. and Bohr, V.A. (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and $NAD^+$/SIRT1 reduction. Cell, 157, 882-896. crossref(new window)

Jang, S.Y., Kang, H.T. and Hwang, E.S. (2012) Nicotinamide-induced mitophagy: event mediated by high $NAD^+$/ NADH ratio and SIRT1 protein activation. J. Biol. Chem., 287, 19304-19314. crossref(new window)

Rickenbacher, A., Jang, J.H., Limani, P., Ungethum, U., Lehmann, K., Oberkofler, C.E., Weber, A., Graf, R., Humar, B. and Clavien, P.A. (2014) Fasting protects liver from ischemic injury through Sirt1-mediated downregulation of circulating HMGB1 in mice. J. Hepatol., 61, 301-308. crossref(new window)

Gerhart-Hines, Z., Rodgers, J.T., Bare, O., Lerin, C., Kim, S.H., Mostoslavsky, R., Alt, F.W., Wu, Z. and Puigserver, P. (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J., 26, 1913-1923. crossref(new window)

Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M. and Puigserver, P. (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434, 113-118. crossref(new window)

Purushotham, A., Schug, T.T., Xu, Q., Surapureddi, S., Guo, X. and Li, X. (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab., 9, 327-338. crossref(new window)

Aquilano, K., Vigilanza, P., Baldelli, S., Pagliei, B., Rotilio, G. and Ciriolo, M.R. (2010) Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J. Biol. Chem., 285, 21590-21599. crossref(new window)