Advanced SearchSearch Tips
Pyruvate Kinase M2: A Novel Biomarker for the Early Detection of Acute Kidney Injury
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Toxicological Research
  • Volume 32, Issue 1,  2016, pp.47-56
  • Publisher : The Korean Society of Toxicology
  • DOI : 10.5487/TR.2016.32.1.047
 Title & Authors
Pyruvate Kinase M2: A Novel Biomarker for the Early Detection of Acute Kidney Injury
Cheon, Ji Hyun; Kim, Sun Young; Son, Ji Yeon; Kang, Ye Rim; An, Ji Hye; Kwon, Ji Hoon; Song, Ho Sub; Moon, Aree; Lee, Byung Mu; Kim, Hyung Sik;
  PDF(new window)
The identification of biomarkers for the early detection of acute kidney injury (AKI) is clinically important. Acute kidney injury (AKI) in critically ill patients is closely associated with increased morbidity and mortality. Conventional biomarkers, such as serum creatinine (SCr) and blood urea nitrogen (BUN), are frequently used to diagnose AKI. However, these biomarkers increase only after significant structural damage has occurred. Recent efforts have focused on identification and validation of new noninvasive biomarkers for the early detection of AKI, prior to extensive structural damage. Furthermore, AKI biomarkers can provide valuable insight into the molecular mechanisms of this complex and heterogeneous disease. Our previous study suggested that pyruvate kinase M2 (PKM2), which is excreted in the urine, is a sensitive biomarker for nephrotoxicity. To appropriately and optimally utilize PKM2 as a biomarker for AKI requires its complete characterization. This review highlights the major studies that have addressed the diagnostic and prognostic predictive power of biomarkers for AKI and assesses the potential usage of PKM2 as an early biomarker for AKI. We summarize the current state of knowledge regarding the role of biomarkers and the molecular and cellular mechanisms of AKI. This review will elucidate the biological basis of specific biomarkers that will contribute to improving the early detection and diagnosis of AKI.
Acute kidney injury;Pyruvate kinase M2;Biomarker;
 Cited by
Shedding New Lights with the Breakthrough Ideas to Understand Current Trends in Modern Toxicology,;;

Toxicological Research, 2016. vol.32. 1, pp.1-3 crossref(new window)
Shedding New Lights with the Breakthrough Ideas to Understand Current Trends in Modern Toxicology, Toxicological Research, 2016, 32, 1, 1  crossref(new windwow)
Ameliorative effects of pine bark extract on cisplatin-induced acute kidney injury in rats, Renal Failure, 2017, 39, 1, 363  crossref(new windwow)
Predicting acute kidney injury: current status and future challenges, Journal of Nephrology, 2017, 1724-6059  crossref(new windwow)
Van Biesen, W., Vanholder, R. and Lamiere, N. (2006) Defining acute renal failure: RIFLE and beyond. Clin. J. Am. Soc. Nephrol., 1, 1314-1319. crossref(new window)

Basile, D.P., Anderson, M.D. and Sutton, T.A. (2012) Pathophysiology of acute kidney injury. Compr. Physiol., 2, 1303-1353.

Ricci, Z., Cruz, D.N. and Ronco, C. (2011) Classification and staging of acute kidney injury: beyond the RIFLE and AKIN criteria. Nat. Rev. Nephrol., 7, 201-208. crossref(new window)

Thadhani, R., Pascual, M. and Bonventre, J.V. (1996) Acute renal failure. N. Engl. J. Med., 334, 1448-1460. crossref(new window)

Ympa, Y.P., Sakr, Y., Reinhart, K. and Vincent, J.L. (2005) Has mortality from acute renal failure decreased? A systematic review of the literature. Am. J. Med., 118, 827-832. crossref(new window)

Espandiari, P., Zhang, J., Rosenzweig, B.A., Vaidya, V.S., Sun, J., Schnackenberg, L., Herman, E.H., Knapton, A., Bonventre, J.V., Beger, R.D., Thompson, K.L. and Hanig, J. (2008) The utility of a rodent model in detecting pediatric drug-induced nephrotoxicity. Toxicol. Sci., 99, 637-648.

Zhou, Y., Vaidya, V.S., Brown, R.P., Zhang, J., Rosenzweig, B.A., Thompson, K.L., Miller, T.J., Bonventre, J.V. and Goering, P.L. (2008) Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol. Sci., 101, 159-170. crossref(new window)

Moran, S.M. and Myers, B.D. (1985) Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int., 27, 928-937. crossref(new window)

Star, R.A. (1998) Treatment of acute renal failure, Kidney Int., 54, 1817-1831. crossref(new window)

Mehta, R.L., Kellum, J.A., Shah, S.V., Molitoris, B.A., Ronco, C., Warnock, D.G. and Levin, A. (2007). Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care, 11, R3. crossref(new window)

Holley, J.L. (2009) Clinical approach to the diagnosis of acute renal failure (5th edition). Primer on Kidney Diseases, Philadelphia. pp. 118-169.

Smith, M.C. (2004) Acute renal failure. (3rd edition). Clinical Decisions in Urology, Hamilton, Ontario, Canada.

Food and Drug Administration (FDA). (2009) Predictive safety testing consortium (PSTC). Available from: pp. 396-435.

Vaidya, V.S., Ferguson, M.A. and Bonventre, J.V. (2008) Biomarkers of acute kidney injury. Annu. Rev. Pharmacol. Toxicol., 48, 463-493. crossref(new window)

Astor, B.C., Muth, B., Kaufman, D.B., Pirsch, J.D., Michael Hofmann, R. and Djamali, A. (2013) Serum $\beta$2-microglobulin at discharge predicts mortality and graft loss following kidney transplantation. Kidney Int., 84, 810-817. crossref(new window)

Bernier, G.M. (1980) $\beta$2-Microglobulin: structure, function and significance. Vox Sang., 38, 323-327. crossref(new window)

Vaidya, V.S., Ferguson, M.A. and Bonventre, J.V. (2008) Biomarkers of acute kidney injury. Annu. Rev. Pharmacol. Toxicol., 48, 463-493. crossref(new window)

Caccamo, A.E., Scltriti, M., Caporali, A., D'Arca, D., Scorcioni, F., Astancolle, S., Mangiola, M. and Bettuzzi, S. (2004) Cell detachment and apoptosis induction of immortalizaed human prostate epithelial cells are associated with early accumulation of a 45 kDa nuclear isoform of clusterin. Biochem. J., 382, 157-168. crossref(new window)

Rampoldi, L., Scolari, F., Amoroso, A., Ghiggeri, G. and Devuyst, O. (2011) The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int., 80, 338-347. crossref(new window)

Yan, Q., Sui, W., Wang, B., Zou, H., Zou, G. and Luo, H. (2012) Expression of MMP-2 and TIMP-1 in renal tissue of patients with chronic active antibody-mediated renal graft rejection. Diagn. Pathol., 7, 141. crossref(new window)

Dinarello, C.A., Novick, D., Rubinstein, M. and Lonnemann, G. (2003) Interleukin 18 and interleukin 18 binding protein: possible role in immunosuppression of chronic renal failure. Blood Purif., 21, 258-270. crossref(new window)

Campbell, J.A., Corrigall, A.V., Guy, A. and Kirsch, R.E. (1991) Immunohistologic localization of alpha, mu, and pi class glutathione S-transferases in human tissues. Cancer, 67, 1608-1613. crossref(new window)

Xie, Y., Sakatsume, M., Nishi, S., Narita, I., Arakawa, M. and Gejyo, F. (2001) Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int., 60, 1645-1657. crossref(new window)

Yu, Y., Jin, H., Holder, D., Ozer, J.S., Villarreal, S., Shughrue, P., Shi, S., Figueroa, D.J., Clouse, H., Su, M., Muniappa, N., Troth, S.P., Bailey, W., Seng, J., Aslamkhan, A.G., Thudium, D., Sistare, F.D. and Gerhold, D.L. (2010) Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat. Biotechnol., 28, 470-477. crossref(new window)

Yang, J., Goetz, D., Li, J.Y., Wang, W., Mori, K., Setlik, D., Du, T., Erdjument-Bromage, H., Tempst, P., Strong, R. and Barasch, J. (2002) An iron delivery pathway mediated by a lipocalin. Mol. Cell, 10, 1045-1056. crossref(new window)

Borregaard, N., Sehested, M., Nielsen, B.S., Sengelov, H. and Kjeldsen, L. (1995) Biosynthesis of granule proteins in normal human bone marrow cells. Gelatinase is a marker of terminal neutrophil differentiation. Blood, 85, 812-817.

Mishra, J., Dent, C., Tarabishi, R., Mitsnefes, M.M., Ma, Q., Kelly, C., Ruff, S.M., Zahedi, K., Shao, M., Bean, J., Mori, K., Barasch, J. and Devarajan, P. (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet, 365, 1231-1238. crossref(new window)

Moran, S.M. and Myers, B.D. (1985) Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int., 27, 928-937. crossref(new window)

Bennett, M.R., Nehus, E., Haffner, C., Ma, Q. and Devarajan, P. (2015) Pediatric reference ranges for acute kidney injury biomarkers. Pediatr. Nephrol., 30, 677-685. crossref(new window)

Bennett, M., Dent, C.L., Ma, Q., Dastrala, S., Grenier, F., Workman, R., Syed, H., Ali, S., Barasch, J. and Devarajan, P. (2008) Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin. J. Am. Soc. Nephrol., 3, 665-673. crossref(new window)

Won, A.J., Kim, S., Kim, Y.G., Kim, K.B., Choi, W.S., Kacew, S., Kim, K.S., Jung, J.H., Lee, B.M., Kim, S. and Kim, H.S. (2015) Discovery of urinary metabolomic biomarkers for early detection of acute kidney injury. Mol. Biosyst., 12, 133-144.

Xin, C., Yulong, X., Yu, C., Changchun, C., Feng, Z. and Xinwei, M. (2008) Urine neutrophil gelatinase-associated lipocalin and interleukin-18 predict acute kidney injury after cardiac surgery. Renal Failure, 30, 904-913. crossref(new window)

Silberstein, J.L., Sprenkle, P.C., Su, D., Power, N.E., Tarin, T.V., Ezell, P., Sjoberg, D.D., Feifer, A., Fleisher, M., Russo, P. and Touijer, K.A. (2013) Neutrophil gelatinase-associated lipocalin (NGAL) levels in response to unilateral renal ischaemia in a novel pilot two-kidney porcine model. BJU Int., 112, 517-525. crossref(new window)

Sprenkle, P.C., Wren, J., Maschino, A.C., Feifer, A., Power, N., Ghoneim, T., Sternberg, I., Fleisher, M. and Russo, P. (2013) Urine neutrophil gelatinase-associated lipocalin as a marker of acute kidney injury after kidney surgery. J. Urol., 190, 159-164. crossref(new window)

Zekey, F., Senkul, T., Ates, F., Soydan, H., Yilmaz, O. and Baykal, K. (2012) Evaluation of the impact of shock wave lithotripsy on kidneys using a new marker: how do neutrophil gelatinese-associated lypocalin values change after shock wave lithotripsy?. Urology, 80, 267-272. crossref(new window)

Ichimura, T., Bonventre, J.V., Bailly, V., Wei, H., Hession, C.A., Cate, R.L. and Sanicola, M. (1998) Kidney Injury Molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem., 273, 4135-4142. crossref(new window)

Han, W.K., Bailly, V., Abichandani, R., Thadhani, R. and Bonventre, J.V. (2002) Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int., 62, 237-244. crossref(new window)

van Timmeren, M.M., van den Heuvel, M.C., Bailly, V., Bakker, S.J., van Goor, H. and Stegeman, C.A. (2007) Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J. Pathol., 212, 209-217. crossref(new window)

Solez, K., Colvin, R.B., Racusen, L.C., Haas, M., Sis, B., Mengel, M., Halloran, P.F., Baldwin, W., Banfi, G., Collins, A.B., Cosio, F., David, D.S., Drachenberg, C., Einecke, G., Fogo, A.B., Gibson, I.W., Glotz, D., Iskandar, S.S., Kraus, E., Lerut, E., Mannon, R.B., Mihatsch, M., Nankivell, B.J., Nickeleit, V., Papadimitriou, J.C., Randhawa, P., Regele, H., Renaudin, K., Roberts, I., Seron, D., Smith, R.N. and Valente, M. (2008) Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant., 8, 753-760. crossref(new window)

Han, W.K., Waikar, S.S., Johnson, A., Betensky, R.A., Dent, C.L., Devarajan, P. and Bonventre, J.V. (2008) Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int., 73, 863-869. crossref(new window)

Bonventre, J.V. (2009) Bonventre Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol. Dial. Transplant., 24, 3265-3268. crossref(new window)

Kim, S.Y., Sohn, S.J., Won, A.J., Kim, H.S. and Moon, A. (2014) Identification of noninvasive biomarkers for nephrotoxicity using HK-2 human kidney epithelial cells. Toxicol. Sci., 140, 247-258. crossref(new window)

Itokazu, Y., Segawa, Y., Inoue, N. and Omata, T. (1999) Dgalactosamine induced mouse hepatic apoptosis: possible involvement with tumor necrosis factor, but not with caspase-3 activity. Biol. Pharm. Bull., 22, 1127-1130. crossref(new window)

Lee, Y.K., Park, E.Y., Kim, S., Son, J.Y., Kim, T.H., Kang, W.G., Jeong, T.C., Kim, K.B., Kwack, S.J., Lee, J., Kim, S., Lee, B.M. and Kim, H.S. (2014) Evaluation of cadmiuminduced nephrotoxicity using urinary metabolomic profiles in sprague-dawley male rats. J. Toxicol. Environ. Health Part A, 77, 1384-1398. crossref(new window)

de Boer, I.H., Katz, R., Cao, J.J., Fried, L.F., Kestenbaum, B., Mukamal, K., Rifkin, D.E., Sarnak, M.J., Shlipak, M.G. and Siscovick, D.S. (2009) Cystatin C, albuminuria, and mortality among older adults with diabetes. Diabetes Care, 32, 1833-1838. crossref(new window)

Beringer, P.M., Hidayat, L., Heed, A., Zheng, L., Owens, H., Benitez, D. and Rao, A.P. (2009) GFR estimates using cystatin C are superior to serum creatinine in adult patients with cystic fibrosis. J. Cystic Fibrosis, 8, 19-25. crossref(new window)

Koyner, J.L., Bennett, M.R., Worcester, E.M., Ma, Q., Raman, J., Jeevanandam, V., Kasza, K.E., O'Connor, M.F., Konczal, D.J., Trevino, S., Devarajan, P. and Murray, P.T. (2008) Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int., 74, 1059-1069. crossref(new window)

Villa, P., Jimenez, M., Soriano, M.C., Manzanares, J. and Casasnovas, P. (2005) Serum cystatin C concentration as a marker of acute renal dysfunction in critically ill patients. Crit. Care, 9, R139-143.

Herget-Rosenthal, S., Marggraf, G., Husing, J., Goring, F., Pietruck, F., Janssen, O., Philipp, T. and Kribben, A. (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int., 66, 1115-1122. crossref(new window)

Oldberg, A., Franzen, A. and Heinegard, D. (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc. Natl. Acad. Sci. U.S.A., 83, 8819-8823. crossref(new window)

Patarca, R., Freeman, G.J., Singh, R.P., Wei, F.Y., Durfee, T., Blattner, F., Regnier, D.C., Kozak, C.A., Mock, B.A., Morse, H.C. 3rd., Jerrells, T.R. and Cantor, H. (1989) Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. J. Exp. Med., 170, 145-161. crossref(new window)

Nomura, S., Wills, A.J., Edwards, D.R., Heath, J.K. and Hogan, B.L. (1988) Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J. Cell Biol., 106, 441-450. crossref(new window)

Shiraga, H., Min, W., VanDusen, W.J., Clayman, M.D., Miner, D., Terrell, C.H., Sherbotie, J.R., Foreman, J.W., Przysiecki, C., Neilson, E.G. and Hoyer, J.R. (1992) Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc. Natl. Acad. Sci. U.S.A., 89, 426-430. crossref(new window)

Brown, L.F., Berse, B., Van de Water, L., Papadopoulos-Sergiou, A., Perruzzi, C.A., Manseau, E.J., Dvorak, H.F. and Senger, D.R. (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol. Biol. Cell, 3, 1169-1180. crossref(new window)

Chen, J., Singh, K., Mukherjee, B.B. and Sodek, J. (1993) Developmental expression of osteopontin (OPN) mRNA in rat tissues: evidence for a role for OPN in bone formation and resorption. Matrix, 13, 113-123. crossref(new window)

Alchi, B., Nishi, S., Kondo, D., Kaneko, Y., Matsuki, A., Imai, N., Ueno, M., Iguchi, S., Sakatsume, M., Narita, I., Yamamoto, T. and Gejyo, F. (2005) Osteopontin expression in acute renal allograft rejection. Kidney Int., 67, 886-896. crossref(new window)

Kahles, F., Findeisen, H.M. and Bruemmer, D. (2014) Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab., 3, 384-393. crossref(new window)

Okamura, H., Tsutsi, H., Komatsu, T., Yutsudo, M., Hakura, A., Tanimoto, T., Torigoe, K., Okura, T., Nukada, Y., Hattori, K., Akita, K., Namba, M., Tanabe, F., Konishi, K., Fukuda, S. and Kurimoto, M. (1995) Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature, 378, 88-91. crossref(new window)

Boros, P. and Bromberg, J.S. (2006) New cellular and molecular immune pathways in ischemia/reperfusion injury. Am. J. Transplant., 6, 652-658. crossref(new window)

Parikh, C.R., Mishra, J., Thiessen-Philbrook, H., Dursun, B., Ma, Q., Kelly, C., Dent, C., Devarajan, P. and Edelstein, C.L. (2006) Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int., 70, 199-203. crossref(new window)

Xin, C., Yulong, X., Yu, C., Changchun, C., Feng, Z. and Xinwei, M. (2008) Urine neutrophil gelatinase-associated lipocalin and interleukin-18 predict acute kidney injury after cardiac surgery. Renal Failure, 30, 904-913. crossref(new window)

He, Z., Lu, L., Altmann, C., Hoke, T.S., Ljubanovic, D., Jani, A., Dinarello, C.A., Faubel, S. and Edelstein, C.L. (2008) Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury. Am. J. Physiol. Renal Physiol., 295, F1414-1421. crossref(new window)

Drake, P.L., Krieg, E., Teass, A.W. and Vallyathan, V. (2002) Two assays for urinary N-acetyl-beta-D-glucosaminidase compared. Clin. Chem., 48, 1604-1605.

Ali, R.J., Al-Obaidi, F.H. and Arif, H.S. (2014) The role of urinary N-acetyl beta-D-glucosaminidase in children with urological problems. Oman Med. J., 29, 285-288. crossref(new window)

Vaidya, V.S., Ozer, J.S., Dieterle, F., Collings, F.B., Ramirez, V., Troth, S., Muniappa, N., Thudium, D., Gerhold, D., Holder, D.J., Bobadilla, N.A., Marrer, E., Perentes, E., Cordier, A., Vonderscher, J., Maurer, G., Goering, P.L., Sistare, F.D. and Bonventre, J.V. (2010) Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat. Biotechnol., 28, 478-485. crossref(new window)

Marchewka, Z., Kuzniar, J. and Dlugosz, A. (2001) Enzymuria and beta2-mikroglobulinuria in the assessment of the influence of proteinuria on the progression of glomerulopathies. Int. Urol. Nephrol., 33, 673-676. crossref(new window)

Tolkoff-Rubin, N.E., Rubin, R.H. and Bonventre, J.V. (1988) Noninvasive renal diagnostic studies. Clin. Lab. Med., 8, 507-526.

Schaub, S., Wilkins, J.A., Antonovici, M., Krokhin, O., Weiler, T., Rush, D. and Nickerson, P. (2005) Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am. J. Transplant., 5, 729-738. crossref(new window)

Donadio, C., Lucchesi, A., Ardini, M. and Giordani, R. (2001) Cystatin C, beta 2-microglobulin, and retinol-binding protein as indicators of glomerular filtration rate: comparison with plasma creatinine. J. Pharm. Biomed. Anal., 24, 835-842. crossref(new window)

Branten, A.J., Mulder, T.P., Peters, W.H., Assmann, K.J. and Wetzels, J.F. (2000) Urinary excretion of glutathione S transferases alpha and pi in patients with proteinuria: reflection of the site of tubular injury. Nephron, 85, 120-126. crossref(new window)

Harrison, D.J., Kharbanda, R., Cunningham, D.S., McLellan, L.I., and Hayes, J.D. (1989) Distribution of glutathione Stransferase isoenzymes in human kidney: basis for possible markers of renal injury. J. Clin. Pathol., 42, 624-628. crossref(new window)

Gautier, J.C., Riefke, B., Walter, J., Kurth, P., Mylecraine, L., Guilpin, V., Barlow, N., Gury, T., Hoffman, D., Ennulat, D., Schuster, K., Harpur, E. and Pettit, S. (2010) Evaluation of novel biomarkers of nephrotoxicity in two strains of rat treated with Cisplatin. Toxicol. Pathol., 38, 943-956. crossref(new window)

Svendsen, K.B., Ellingsen, T., Bech, J.N., Pfeiffer-Jensen, M., Stengaard-Pedersen, K. and Pedersen, E.B. (2005) Urinary excretion of ${\alpha}$-GST and albumin in rheumatoid arthritis patients treated with methotrexate or other DMARDs alone or in combination with NSAIDs. Scand. J. Rheumatol., 34, 34-39. crossref(new window)

Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten, R.E., Wei, R., Fleming, M.D., Schreiber, S.L. and Cantley, L.C. (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452, 230-233. crossref(new window)

Mazurek, S., Drexler, H.C., Troppmair, J., Eigenbrodt, E. and Rapp, U.R. (2007) Regulation of pyruvate kinase type M2 by A-Raf: a possible glycolytic stop or go mechanism. Anticancer Res., 27, 3963-3971.

Muirhead, H. (1990) Isoenzymes of pyruvate kinase. Biochem. Soc. Trans., 18, 193-196. crossref(new window)

Weiss, R.H. and Kim, K. (2011) Metabolomics in the study of kidney diseases. Nat. Rev. Nephrol., 8, 22-33.

Zager, R.A., Johnson, A.C. and Becker, K. (2014) Renal cortical pyruvate depletion during AKI. J. Am. Soc. Nephrol., 25, 998-1012. crossref(new window)

Wakino, S., Hasegawa, K. and Itoh, H. (2015) Sirtuin and metabolic kidney disease. Kidney Int., 88, 691-698. crossref(new window)

He, G., Jiang, Y., Zhang, B. and Wu, G. (2014) The effect of HIF-1${\alpha}$ on glucose metabolism, growth and apoptosis of pancreatic cancerous cells. Asia Pac. J. Clin. Nutr., 23, 174-180.

Bartrons, R. and Caro, J. (2007) Hypoxia, glucose metabolism and the Warburg's effect. J. Bioenerg. Biomembr., 39, 223-229. crossref(new window)

Yang, X.Y., Zheng, K.D., Lin, K., Zheng, G., Zou, H., Wang, J.M., Lin, Y.Y., Chuka, C.M., Ge, R.S., Zhai, W. and Wang, J.G. (2015) Energy metabolism disorder as a contributing factor of rheumatoid arthritis: a comparative proteomic and metabolomic study. PLoS One, 10, e0132695. crossref(new window)