Advanced SearchSearch Tips
External Application of Apo-9'-fucoxanthinone, Isolated from Sargassum muticum, Suppresses Inflammatory Responses in a Mouse Model of Atopic Dermatitis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Toxicological Research
  • Volume 32, Issue 2,  2016, pp.109-114
  • Publisher : The Korean Society of Toxicology
  • DOI : 10.5487/TR.2016.32.2.109
 Title & Authors
External Application of Apo-9'-fucoxanthinone, Isolated from Sargassum muticum, Suppresses Inflammatory Responses in a Mouse Model of Atopic Dermatitis
Han, Sang-Chul; Kang, Na-Jin; Yoon, Weon-Jong; Kim, Sejin; Na, Min-Chull; Koh, Young-Sang; Hyun, Jin-Won; Lee, Nam-Ho; Ko, Mi-Hee; Kang, Hee-Kyoung; Yoo, Eun-Sook;
  PDF(new window)
Allergic skin inflammation such as atopic dermatitis is characterized by skin barrier dysfunction, edema, and infiltration with various inflammatory cells. The anti-inflammatory effects of Apo-9'-fucoxanthinone, isolated from Sargassum muticum, have been described in many diseases, but the mechanism by which it modulates the immune system is poorly understood. In this study, the ability of Apo-9'-fucoxanthinone to suppress allergic reactions was investigated using a mouse model of atopic dermatitis. The Apo-9'-fucoxanthinone-treated group showed significantly decreased immunoglobulin E in serum. Also, Apo-9'-fucoxanthinone treatment resulted in a smaller lymph node size with reduced the thickness and length compared to the induction group. In addition, Apo-9'-fucoxanthinone inhibited the expression of interleukin-4, interferon-gamma and tumor necrosis factor-alpha by phorbol 12-myristate 13-acetate and ionomycin-stimulated lymphocytes. These results suggest that Apo-9'-fucoxanthinone may be a useful therapeutic strategy for treating chronic inflammatory diseases.
Apo-9'-fucoxanthinone;Atopic dermatitis;2, 4-Dinitrochlorobenzene;Immunoglobulin E;Phorbol 12-myristate 13-acetate;Ionomycin;
 Cited by
Leung, D.Y., Boguniewicz, M., Howell, M.D., Nomura, I. and Hamid, Q.A. (2004) New insights into atopic dermatitis. J. Clin. Invest., 113, 651-657. crossref(new window)

Li, C., Lasse, S., Lee, P., Nakasaki, M., Chen, S.W., Yamasaki, K., Gallo, R.L. and Jamora, C. (2010) Development of atopic dermatitis-like skin disease from the chronic loss of epidermal caspase-8. Proc. Natl. Acad. Sci. U.S.A., 107, 22249-22254. crossref(new window)

Nystad, W., Roysamb, E., Magnus, P., Tambs, K. and Harris, J.R. (2005) A comparison of genetic and environmental variance structures for asthma, hay fever and eczema with symptoms of the same diseases: a study of Norwegian twins. Int. J. Epidemiol., 34, 1302-1309. crossref(new window)

Wahlgren, C.F. (1999) Itch and atopic dermatitis: an overview. J. Dermatol., 26, 770-779. crossref(new window)

Kawakami, T., Ando, T., Kimura, M., Wilson, B.S. and Kawakami, Y. (2009) Mast cells in atopic dermatitis. Curr. Opin. Immunol., 21, 666-678. crossref(new window)

Kitamura, Y. and Ito, A. (2005) Mast cell-committed progenitors. Proc. Natl. Acad. Sci. U.S.A., 102, 11129-11130. crossref(new window)

Leitges, M., Gimborn, K., Elis, W., Kalesnikoff, J., Hughes, M.R., Krystal, G. and Huber, M. (2002) Protein kinase C-${\delta}$ is a negative regulator of antigen-induced mast cell degranulation. Mol. Cell. Biol., 22, 3970-3980. crossref(new window)

Glimcher, L.H. and Murphy, K.M. (2000) Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev., 14, 1693-1711.

Ouyang, W., Ranganath, S.H., Weindel, K., Bhattacharya, D., Murphy, T.L., Sha, W.C. and Murphy, K.M. (1998) Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity, 9, 745-755. crossref(new window)

Romagnani, S. (2000) The role of lymphocytes in allergic disease. J. Allergy Clin. Immunol., 105, 399-408. crossref(new window)

Elson, C.O., Cong, Y., Brandwein, S., Weaver, C.T., McCabe, R.P., Mahler, M., Sundberg, J.P. and Leiter, E.H. (1998) Experimental models to study molecular mechanisms underlying intestinal inflammation. Ann. N. Y. Acad. Sci., 859, 85-95. crossref(new window)

Chae, D., Manzoor, Z., Kim, S.C., Kim, S., Oh, T.H., Yoo, E.S., Kang, H.K., Hyun, J.W., Lee, N.H., Ko, M.H. and Koh, Y.S. (2013) Apo-9'-fucoxanthinone, isolated from Sargassum muticum, inhibits CpG-induced inflammatory response by attenuating the mitogen-activated protein kinase pathway. Mar. Drugs, 11, 3272-3287. crossref(new window)

Han, S.C., Kang, G.J., Ko, Y.J., Kang, H.K., Moon, S.W., Ann, Y.S. and Yoo, E.S. (2012) External application of fermented olive flounder (paralichthys olivaceus) oil alleviates inflammatory responses in 2,4-dinitrochlorobenzene-induced atopic dermatitis mouse model. Toxicol. Res., 28, 159-164. crossref(new window)

Jo, W.S., Choi, Y.J., Kim, H.J., Nam, B.H., Lee, G.A., Seo, S.Y., Lee, S.W. and Jeong, M.H. (2010) Methanolic extract of asterina pectinifera inhibits LPS-induced inflammatory mediators in murine macrophage. Toxicol. Res., 26, 37-46. crossref(new window)

Yang, E.J., Ham, Y.M., Lee, W.J., Lee, N.H. and Hyun, C.G. (2013) Anti-inflammatory effects of apo-9'-fucoxanthinone from the brown alga, Sargassum muticum. Daru, 21, 62. crossref(new window)

Miyagaki, T., Asano, Y., Shibata, S., Ohno, Y., Tsunemi, Y., Saeki, H., Tamaki, K. and Sato, S. (2011) The development of Th1-mediated sarcoidosis improves the clinical course of Th2-mediated atopic dermatitis. Mod. Rheumatol., 21, 406-409. crossref(new window)

Levin, T.A., Ownby, D.R., Smith, P.H., Peterson, E.L., Williams, L.K., Ford, J., Young, P. and Johnson, C.C. (2006) Relationship between extremely low total serum IgE levels and rhinosinusitis. Ann. Allergy Asthma Immunol., 97, 650-652. crossref(new window)

de Vries, I.J., Langeveld-Wildschut, E.G., van Reijsen, F.C., Bihari, I.C., Bruijnzeel-Koomen, C.A. and Thepen, T. (1997) Nonspecific T-cell homing during inflammation in atopic dermatitis: expression of cutaneous lymphocyte-associated antigen and integrin ${\alpha}$E${\beta}$7 on skin-infiltrating T cells. J. Allergy Clin. Immunol., 100, 694-701. crossref(new window)

Debes, G.F., Bonhagen, K., Wolff, T., Kretschmer, U., Krautwald, S., Kamradt, T. and Hamann, A. (2004) CC chemokine receptor 7 expression by effector/memory $CD4^+$ T cells depends on antigen specificity and tissue localization during influenza A virus infection. J. Virol., 78, 7528-7535. crossref(new window)

Szabo, S.J., Kim, S.T., Costa, G.L., Zhang, X., Fathman, C.G. and Glimcher, L.H. (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell, 100, 655-669. crossref(new window)

Zheng, W. and Flavell, R.A. (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell, 89, 587-596. crossref(new window)

Schwartz, L.B. (2004) Effector cells of anaphylaxis: mast cells and basophils. Novartis Found. Symp., 257, 65-74.

Stone, K.D., Prussin, C. and Metcalfe, D.D. (2010) IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol., 125, S73-S80. crossref(new window)

Singer, P.A., McEvilly, R.J., Noonan, D.J., Dixon, F.J. and Theofilopoulos, A.N. (1986) Clonal diversity and T-cell receptor ${\beta}$-chain variable gene expression in enlarged lymph nodes of MRL-lpr/lpr lupus mice. Proc. Natl. Acad. Sci. U.S.A., 83, 7018-7022. crossref(new window)