Advanced SearchSearch Tips
Modulation of Apoptosis and Differentiation by the Treatment of Sulfasalazine in Rabbit Articular Chondrocytes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Toxicological Research
  • Volume 32, Issue 2,  2016, pp.115-121
  • Publisher : The Korean Society of Toxicology
  • DOI : 10.5487/TR.2016.32.2.115
 Title & Authors
Modulation of Apoptosis and Differentiation by the Treatment of Sulfasalazine in Rabbit Articular Chondrocytes
Lee, Won Kil; Kang, Jin Seok;
  PDF(new window)
This study was conducted to examine the cellular regulatory mechanisms of sulfasalazine (SSZ) in rabbit articular chondrocytes treated with sodium nitroprusside (SNP). Cell phenotype was determined, and the MTT assay, Western blot analysis and immunofluorescence staining of type II collagen was performed in control, SNP-treated and SNP plus SSZ () rabbit articular chondrocytes. Cellular proliferation was decreased significantly in the SNP-treated group compared with that in the control (p < 0.01). SSZ treatment clearly increased the SNP-reduced proliferation levels in a concentration-dependent manner (p < 0.01). SNP treatment induced significant dedifferentiation and inflammation compared with control chondrocytes (p < 0.01). Type II collagen expression levels increased in a concentration-dependent manner in response to SSZ treatment but were unaltered in SNP-treated chondrocytes (p < 0.05 and < 0.01, respectively). Cylooxygenase-2 (COX-2) expression increased in a concentration-dependent manner in response to SSZ treatment but was unaltered in SNP-treated chondrocytes (p < 0.05). Immunofluorescence staining showed that SSZ treatment increased type II collagen expression compared with that in SNP-treated chondrocytes. Furthermore, phosphorylated extracellular regulated kinase (pERK) expression levels were decreased significantly in the SNP-treated group compared with those in control chondrocytes (p < 0.01). Expression levels of pERK increased in a concentration-dependent manner by SSZ but were unaltered in SNP-treated chondrocytes. pp38 kinase expression levels increased in a concentration-dependent manner by SSZ but were unaltered in control chondrocytes (p < 0.01). In summary, SSZ significantly inhibited nitric oxide-induced cell death and dedifferentiation, and regulated extracellular regulated kinases 1 and 2 and p38 kinase in rabbit articular chondrocytes.
Chondrocyte;Sulfasalazine;Nitric oxide;Apoptosis;Differentiation;
 Cited by
Hadjigogos, K. (2003) The role of free radicals in the pathogenesis of rheumatoid arthritis. Panminerva Med., 45, 7-13.

Harris, E.D., Jr., Faulkner, C.S., 2nd and Brown, F.E. (1975) Collagenolytic systems in rheumatoid arthritis. Clin. Orthop. Relat. Res., (110), 303-316.

Dai, S.M., Shan, Z.Z., Xu, H. and Nishioka, K. (2007) Cellular targets of interleukin-18 in rheumatoid arthritis. Ann. Rheum. Dis., 66, 1411-1418. crossref(new window)

Otero, M. and Goldring, M.B. (2007) Cells of the synovium in rheumatoid arthritis. Arthritis Res. Ther., 9, 220. crossref(new window)

Scott, D.L., Wolfe, F. and Huizinga, T.W. (2010) Rheumatoid arthritis. Lancet, 376, 1094-1108. crossref(new window)

Abramson, S.B. and Amin, A. (2002) Blocking the effects of IL-1 in rheumatoid arthritis protects bone and cartilage. Rheumatology (Oxford), 41, 972-980. crossref(new window)

Carrillo Gutierrez, O.Y., Perez Sanchez, A.G., Medina Serriteno, N. and Rodriguez Orozco, A.R. (2007) Side effects of COX-2 selective inhibitors. Critic related with its administration in patients with rheumatoid arthritis and osteoarthritis. Rev. Alerg. Mex., 54, 116-122.

Chen, Y.F., Jobanputra, P., Barton, P., Bryan, S., Fry-Smith, A., Harris, G. and Taylor, R.S. (2008) Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation. Health Technol. Assess., 12, 1-278.

Shiozawa, S. and Tokuhisa, T. (1992) Contribution of synovial mesenchymal cells to the pathogenesis of rheumatoid arthritis. Semin. Arthritis Rheum., 21, 267-273. crossref(new window)

Tutuncu, Z. and Kavanaugh, A. (2007) Rheumatic disease in the elderly: rheumatoid arthritis. Rheum. Dis. Clin. North Am., 33, 57-70. crossref(new window)

Vergunst, C.E., van de Sande, M.G., Lebre, M.C. and Tak, P.P. (2005) The role of chemokines in rheumatoid arthritis and osteoarthritis. Scand. J. Rheumatol., 34, 415-425. crossref(new window)

Combe, B. (1998) Inflammation and joint destruction during rheumatoid polyarthritis: what relation? Presse Med., 27, 481-483.

Hauselmann, H.J. (1997) Mechanisms of cartilage destruction and novel nonsurgical therapeutic strategies to retard cartilage injury in rheumatoid arthritis. Curr. Opin. Rheumatol., 9, 241-250. crossref(new window)

Meyer, O, (2000) Role of anti-TNF therapy in rheumatoid arthritis. Presse Med., 29, 463-468.

Reines, B.P. (2004) Is rheumatoid arthritis premature osteoarthritis with fetal-like healing? Autoimmun. Rev., 3, 305-311. crossref(new window)

Kastrinaki, M.C. and Papadaki, H.A. (2009) Mesenchymal stromal cells in rheumatoid arthritis: biological properties and clinical applications. Curr. Stem Cell Res. Ther., 4, 61-69. crossref(new window)

Lombardi, A., Pignone, A., Perfetto, F., Tarquini, R., Partsch, G. and Matucci-Cerinic, M. (1993) The enzymatic mechanisms involved in the pathogenesis of rheumatoid arthritis and arthrosis. The role of metalloproteases and serine proteases in the breakdown of articular cartilage. Recenti Prog. Med., 84, 634-641.

Shiozawa, S. and Shiozawa, K. (1988) A review of the histopathological evidence on the pathogenesis of cartilage destruction in rheumatoid arthritis. Scand. J. Rheumatol. Suppl., 74, 65-72.

Bouffi, C., Djouad, F., Mathieu, M., Noel, D. and Jorgensen, C. (2009) Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit? Rheumatology (Oxford), 48, 1185-1189. crossref(new window)

Magliano, M. (2008) Obesity and arthritis. Menopause Int., 14, 149-154.

Amin, A.R. and Abramson, S.B. (1998) The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr. Opin. Rheumatol., 10, 263-268. crossref(new window)

Martel-Pelletier, J., Alaaeddine, N. and Pelletier. J.P. (1999) Cytokines and their role in the pathophysiology of osteoarthritis. Front. Biosci., 4, D694-D703. crossref(new window)

Blanco, F.J., Guitian, R., Vazquez-Martul, E., de Toro, F.J. and Galdo, F. (1998) Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum., 41, 284-289. crossref(new window)

Hashimoto, S., Ochs, R.L., Komiya, S. and Lotz, M. (1998) Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum., 41, 1632-1638. crossref(new window)

Yatsugi, N., Tsukazaki, T., Osaki, M., Koji, T., Yamashita, S. and Shindo, H. (2000) Apoptosis of articular chondrocytes in rheumatoid arthritis and osteoarthritis: correlation of apoptosis with degree of cartilage destruction and expression of apoptosis-related proteins of p53 and c-myc. J. Orthop. Sci., 5, 150-156. crossref(new window)

Cao, M., Westerhausen-Larson, A., Niyibizi, C., Kavalkovich, K., Georgescu, H.I., Rizzo, C.F., Hebda, P.A., Stefanovic-Racic, M. and Evans, C.H. (1997) Nitric oxide inhibits the synthesis of type-II collagen without altering Col2A1 mRNA abundance: prolyl hydroxylase as a possible target. Biochem. J., 324, 305-310. crossref(new window)

Taskiran, D., Stefanovic-Racic, M., Georgescu, H. and Evans, C. (1994) Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem. Biophys. Res. Commun., 200, 142-148. crossref(new window)

Kim, S.J., Hwang, S.G., Shin, D.Y., Kang, S.S. and Chun, J.S. (2002) p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NF${\kappa}$B-dependent transcription and stabilization by serine 15 phosphorylation. J. Biol. Chem., 277, 33501-33508. crossref(new window)

Kim, S.J., Ju, J.W., Oh, C.D., Yoon, Y.M., Song, W.K., Kim, J.H., Yoo, Y.J., Bang, O.S., Kang, S.S. and Chun, J.S. (2002) ERK-1/2 and p38 kinase oppositely regulate nitric oxideinduced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem., 277, 1332-1339. crossref(new window)

Kim, S.J., Kim, H.G., Oh, C.D., Hwang, S.G., Song, W.K., Yoo, Y.J., Kang, S.S. and Chun, J.S. (2002) p38 kinase-dependent and -independent Inhibition of protein kinase C ${\zeta}$ and -${\alpha}$ regulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. J. Biol. Chem., 277, 30375-30381. crossref(new window)

Klotz, U. (1985) Clinical efficacy of oral 5-aminosalicylic acid in the treatment of inflammatory bowel disease. Am. J. Gastroenterol., 80, 660.

Peppercorn, M.A. (1984) Sulfasalazine. Pharmacology, clinical use, toxicity, and related new drug development. Ann. Intern. Med., 101, 377-386. crossref(new window)

Astbury, C., Taggart, A.J., Juby, L., Zebouni, L. and Bird, H.A. (1990) Comparison of the single dose pharmacokinetics of sulphasalazine in rheumatoid arthritis and inflammatory bowel disease. Ann. Rheum. Dis., 49, 587-590. crossref(new window)

Plosker, G.L. and Croom, K.F. (2005) Sulfasalazine: a review of its use in the management of rheumatoid arthritis. Drugs, 65, 1825-1849. crossref(new window)

Azadkhan, A.K., Truelove, S.C. and Aronson, J.K. (1982) The disposition and metabolism of sulphasalazine (salicylazosulphapyridine) in man. Br. J. Clin. Pharmacol., 13, 523-528. crossref(new window)

Klotz, U. and Schwab, M. (2005) Topical delivery of therapeutic agents in the treatment of inflammatory bowel disease. Adv. Drug Deliv. Rev., 57, 267-279. crossref(new window)

Friedman, G. (1986) Sulfasalazine and new analogues. Am. J. Gastroenterol., 81, 141-144.

Klotz, U. (1985) Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5-aminosalicylic acid. Clin. Pharmacokinet., 10, 285-302. crossref(new window)

van Hees, P.A., Bakker, J.H. and van Tongeren, J.H. (1980) Effect of sulphapyridine, 5-aminosalicylic acid, and placebo in patients with idiopathic proctitis: a study to determine the active therapeutic moiety of sulphasalazine. Gut., 21, 632-635. crossref(new window)

Yazdanian, M., Glynn, S.L., Wright, J.L. and Hawi, A. (1998) Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm. Res., 15, 1490-1494. crossref(new window)

Yoon, Y.M., Kim, S.J., Oh, C.D., Ju, J.W., Song, W.K., Yoo, Y.J., Huh, T.L. and Chun, J.S. (2002) Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J. Biol. Chem., 277, 8412-8420. crossref(new window)

Ryu, J.H., Kim, S.J., Kim, S.H., Oh, C.D., Hwang, S.G., Chun, C.H., Oh, S.H., Seong, J.K., Huh, T.L. and Chun, J.S. (2002) Regulation of the chondrocyte phenotype by ${\beta}$-catenin. Development, 129, 5541-5550. crossref(new window)

Poole, A.R. (2003) Cartilage in health and disease in Arthritis and Allied Conditions (McCarthy, D.J. and Koopman, W.J. Ed.) Lea and Febiger, Philadelphia, pp. 279-333.

Goldring, M.B., Birkhead, J., Sandell, L.J., Kimura, T. and Krane, S.M. (1988) Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J. Clin. Invest., 82, 2026-2037. crossref(new window)

Benya, P.D., Padilla, S.R. and Nimni, M.E. (1978) Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell, 15, 1313-1321. crossref(new window)

Gay, S., Gay, R.E. and Koopman, W.J. (1993) Molecular and cellular mechanisms of joint destruction in rheumatoid arthritis: two cellular mechanisms explain joint destruction? Ann. Rheum. Dis., 52, S39-S47. crossref(new window)

Sandell, L.J. and Aigner, T. (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res., 3, 107-113. crossref(new window)

Myers, L.K., Kang, A.H., Postlethwaite, A.E., Rosloniec, E.F., Morham, S.G., Shlopov, B.V., Goorha, S. and Ballou, L.R. (2000) The genetic ablation of cyclooxygenase 2 prevents the development of autoimmune arthritis. Arthritis Rheum., 43, 2687-2693. crossref(new window)

Oh, C.D., Chang, S.H., Yoon, Y.M., Lee, S.J., Lee, Y.S., Kang, S.S. and Chun, J.S. (2000) Opposing role of mitogenactivated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem., 275, 5613-5619. crossref(new window)