Advanced SearchSearch Tips
Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Toxicological Research
  • Volume 32, Issue 2,  2016, pp.95-102
  • Publisher : The Korean Society of Toxicology
  • DOI : 10.5487/TR.2016.32.2.095
 Title & Authors
Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application
Velusamy, Palaniyandi; Kumar, Govindarajan Venkat; Jeyanthi, Venkadapathi; Das, Jayabrata; Pachaiappan, Raman;
  PDF(new window)
In the recent years, noble nanoparticles have attracted and emerged in the field of biology, medicine and electronics due to their incredible applications. There were several methods have been used for synthesis of nanoparticles such as toxic chemicals and high energy physical procedures. To overcome these, biological method has been used for the synthesis of various metal nanoparticles. Among the nanoparticles, silver nanoparticles (AgNPs) have received much attention in various fields, such as antimicrobial activity, therapeutics, bio-molecular detection, silver nanocoated medical devices and optical receptor. Moreover, the biological approach, in particular the usage of natural organisms has offered a reliable, simple, nontoxic and environmental friendly method. Hence, the current article is focused on the biological synthesis of silver nanoparticles and their application in the biomedical field.
Biological synthesis;Metal nanoparticles;Antibacterial activity;Protein degradation;DNA damage;
 Cited by
In situ formation of AgNPs on S. cerevisiae surface as bionanocomposites for bacteria killing and heavy metal removal, International Journal of Environmental Science and Technology, 2017, 14, 8, 1635  crossref(new windwow)
: The progress in understanding the mechanism of nanoparticles’ formation, Biotechnology Progress, 2017, 33, 5, 1381  crossref(new windwow)
antioxidant and cytotoxic potentials, Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45, 4, 748  crossref(new windwow)
Antibacterial Activity of Silver Nanoparticles against Staphylococcus warneri Synthesized Using Endophytic Bacteria by Photo-irradiation, Frontiers in Microbiology, 2017, 8, 1664-302X  crossref(new windwow)
Enhanced antibacterial activity of anodic aluminum oxide membranes embedded with nano-silver-titanium dioxide, Journal of Adhesion Science and Technology, 2017, 1568-5616, 1  crossref(new windwow)
New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications, Environmental Science and Pollution Research, 2017, 1614-7499  crossref(new windwow)
: a green synthetic approach, Artificial Cells, Nanomedicine, and Biotechnology, 2017, 2169-141X, 1  crossref(new windwow)
Arsenic and Cadmium Bioremediation by Antarctic Bacteria Capable of Biosynthesizing CdS Fluorescent Nanoparticles, Journal of Environmental Engineering, 2018, 144, 3, 04017107  crossref(new windwow)
Bhattacharya, R. and Mukherjee, P. (2008) Biological properties of "naked" metal nanoparticles. Adv. Drug Deliv. Rev., 60, 1289-1306. crossref(new window)

Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P. and Misra, A. (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf., A, 339, 134-139. crossref(new window)

Das, J. and Velusamy, P. (2014) Catalytic reduction of methylene blue using biogenic gold nanoparticles from Sesbania grandiflora L. J. Taiwan Inst. Chem. Eng., 45, 2280-2285. crossref(new window)

Narayanan, K.B. and Sakthivel, N. (2010) Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 156, 1-13. crossref(new window)

Wei, D. and Qian, W. (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf. B Biointerfaces, 62, 136-142. crossref(new window)

Li, X., Xu, H., Chen, Z. and Chen, G. (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater., 2011, 270974.

Dadosh, T. (2009) Synthesis of uniform silver nanoparticles with a controllable size. Mater. Lett., 63, 2236-2238. crossref(new window)

Shakeel, A., Mudasir, A., Babu, L.S. and Saiqa, I. (2015) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., Doi:10.1016/J.Jare.2015.02.007. crossref(new window)

Husseiney, M.I., El-Aziz, M.A., Badr, Y. and Mahmoud, M.A. (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A, 67, 1003-1006. crossref(new window)

Priyadarshini, S., Gopinath, V., Meera Priyadharsshini, N., Mubarakali, D. and Velusamy, P. (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf. B Biointerfaces, 102, 232-237. crossref(new window)

Klaus, T., Joerger, R., Olsson, E. and Granqvist, C.G. (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U.S.A., 96, 13611-13614. crossref(new window)

Reddy, A.S., Chen, C.Y., Chen, C.C., Jean, J.S., Chen, H.R., Tseng, M.J., Fan, C.W. and Wang, J.C. (2010) Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J. Nanosci. Nanotechnol., 10, 6567-6574. crossref(new window)

Wei, X., Luo, M., Li, W., Yang, L., Liang, X., Xu, L., Kong, P. and Liu, H. (2012) Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and $AgNO_3$. Bioresour. Technol., 103, 273-278. crossref(new window)

Liu, L., Canizares, M.C., Monger, W., Perrin, Y., Tsakiris, E., Porta, C., Shariat, N., Nicholson, L. and Lomonossoff, G.P. (2005) Cowpea mosaic virus-based systems for the production of antigens and antibodies in plants. Vaccine, 23, 1788-1792. crossref(new window)

Blum, A.S., Soto, C.M., Wilson, C.D., Brower, T.L., Pollack, S.K., Schull, T.L., Chatterji, A., Lin, T., Johnson, J.E., Amsinck, C., Franzon, P., Shashidhar, R. and Ratna, B.R. (2005) An engineered virus as a scaffold for three-dimensional selfassembly on the nanoscale. Small, 1, 702-706. crossref(new window)

Yu, L., Banerjee, I.A. and Matsui, H. (2003) Direct growth of shape-controlled nanocrystals on nanotubes via biological recognition. J. Am. Chem. Soc., 125, 14837-14840. crossref(new window)

Marshall, M., Beliaev, A., Dohnalkova, A., David, W., Shi, L. and Wang, Z. (2007) C-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. Plos Biol., 4, 1324-1333.

Lee, S.W., Mao, C., Flynn, C.E. and Belcher, A.M. (2002) Ordering of quantum dots, using genetically engineered viruses. Science, 296, 892-895. crossref(new window)

Dias, M.A., Lacerda, I.C., Pimentel, P.F., de Castro, H.F. and Rosa, C.A. (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett. Appl. Microbiol., 34, 46-50. crossref(new window)

Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V., Nachane, R.P., Paralikar, K.M. and Balasubramanya, R.H. (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett., 61, 1413-1418. crossref(new window)

Mariekie, G. and Anthony, P. (2006) Microbial production of gold nanoparticles. Gold Bull., 39, 22-28. crossref(new window)

Shenton, W., Douglas, T., Young, M., Stubbs, G. and Mann, S. (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater., 11, 253-256. crossref(new window)

Mao, C., Flynn, C.E., Hayhurst, A., Sweeney, R., Qi, J., Georgiou, G., Iverson, B. and Belcher, A.M. (2003) Viral assembly of oriented quantum dot nanowires. Proc. Natl. Acad. Sci. U.S.A., 100, 6946-6951. crossref(new window)

Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S.K. and Paknikar, K.M. (2002) Microbial synthesis of semiconductor Cds nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng., 78, 583-588. crossref(new window)

Awadalla, F.T. and Pesic, B. (1992) Biosorption of cobalt with the AMTTM metal removing agent. Hydrometallurgy, 28, 65-80. crossref(new window)

Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H. and Jose-Yacaman, M. (2003) Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 19, 1357-1361. crossref(new window)

Hosea, M., Greene, B., Mcpherson, R., Henzl, M., Alexander, M.D. and Darnall, D.W. (1986) Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg. Chim. Acta, 123, 161-165. crossref(new window)

Xie, J., Lee, J.Y., Wang, D.I. and Ting, Y.P. (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small, 3, 672-682. crossref(new window)

Mata, Y.N., Blazquez, M.L., Ballester, A., Gonzalez, F. and Munoz, J.A. (2008) Characterization of the biosorption of cadmium, lead and copper with the brown algae Fucus vesiculosus. J. Hazard. Mater., 158, 316-323. crossref(new window)

Das, J. and Velusamy, P. (2013) Antibacterial effects of biosynthesized silver nanoparticles using aqueous leaf extract of Rosmarinus officinalis L. Mater. Res. Bull., 48, 4531-4537. crossref(new window)

Das, J., Das, M.P. and Velusamy, P. (2013) Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim. Acta, Part A, 104, 265-270. crossref(new window)

Gopinath, V., Mubarakali, D., Priyadarshini, S., Meera, P.N., Noor, T. and Velusamy, P. (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerfaces, 96, 69-74. crossref(new window)

Anshup, A., Venkataraman, J.S., Subramaniam, C., Kumar, R.R., Priya, S., Kumar, T.R., Omkumar, R.V., John, A. and Pradeep, T. (2005) Growth of gold nanoparticles in human cells. Langmuir, 21, 11562-11567. crossref(new window)

Larios-Rodriguez, E., Rangel-Ayon, C., Castillo, S.J., Zavala, G. and Herrera-Urbina, R. (2011) Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo. Nanotechnology, 22, 355601. crossref(new window)

Dwivedi, A.D. and Gopal, K. (2010) Biosynthesis of silver and gold nanoparticles using chenopodium album leaf extract. Colloids Surf., A, 369, 27-33. crossref(new window)

Rai, M., Yadav, A. and Gade, A. (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27, 76-83. crossref(new window)

Agnihotri, S., Mukherji, S. and Mukherji, S. (2014) Size-controlled silver nanoparticles synthesized over the range 5-100 Nm using the same protocol and their antibacterial efficacy. RSC Adv., 4, 3974-3983. crossref(new window)

Park, Y. (2014) A New Paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicol. Res., 30, 169-178. crossref(new window)

Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N. and Kim, J.O. (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 52, 662-668. crossref(new window)

Sondi, I. and Salopek-Sondi, B. (2007) Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci., 275, 177-182.

Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T. and Yacaman, M.J. (2005) The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353. crossref(new window)

Song, H.Y., Ko, K.K., Oh, L.H. and Lee, B.T. (2006) Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur. Cell. Mater., 11, 58.

Mohanpuria, P., Rana, N.K. and Yadav, S.K. (2008) Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res., 10, 507-517. crossref(new window)

Ramamurthy, C.H., Padma, M., Samadanam, I.D., Mareeswaran, R., Suyavaran, A., Kumar, M.S., Premkumar, K. and Thirunavukkarasu, C. (2013) The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf. B Biointerfaces, 102, 808-815. crossref(new window)