Advanced SearchSearch Tips
Cytotoxicity Evaluation of Essential Oil and its Component from Zingiber officinale Roscoe
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Toxicological Research
  • Volume 32, Issue 3,  2016, pp.225-230
  • Publisher : The Korean Society of Toxicology
  • DOI : 10.5487/TR.2016.32.3.225
 Title & Authors
Cytotoxicity Evaluation of Essential Oil and its Component from Zingiber officinale Roscoe
Lee, Yongkyu;
  PDF(new window)
Zingiber officinale Roscoe has been widely used as a folk medicine to treat various diseases, including cancer. This study aims to re-examine the therapeutic potential of co-administration of natural products and cancer chemotherapeutics. Candidate material for this project, -zingiberene, was extracted from Zingiber officinale Roscoe, and -zingiberene makes up of its total essential oil. -Zingiberene showed low values, , , , () in HeLa, SiHa, MCF-7 and HL-60 cells each. These values are a little bit higher than values of general essential oil in those cells. The treatment of -zingiberene produced nucleosomal DNA fragmentation in SiHa cells, and the percentage of sub-diploid cells increased in a concentration-dependent manner in SiHa cells, hallmark features of apoptosis. Mitochondrial cytochrome c activation and an in vitro caspase-3 activity assay demonstrated that the activation of caspases accompanies the apoptotic effect of -zingiberene, which mediates cell death. These results suggest that the apoptotic effect of -zingiberene on SiHa cells may converge caspase-3 activation through the release of mitochondrial cytochrome c into cytoplasm. It is considered that anti-proliferative effect of -zingiberene is a result of apoptotic effects, and -zingiberene is worth furthermore study to develop it as cancer chemotherapeutics.
Cytotoxic activity;-Zingiberene;Anti-proliferation;General essential oil;Cervix cancer cells;
 Cited by
Terpenes from Forests and Human Health, Toxicological Research, 2017, 33, 2, 97  crossref(new windwow)
essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time–kill curve studies, Pharmaceutical Biology, 2017, 55, 1, 190  crossref(new windwow)
Influence of some spice food based bioproducts on human monocytic cells line type THP-1, Molecular Crystals and Liquid Crystals, 2017, 655, 1, 114  crossref(new windwow)
Fabian, D., Sabol, M., Domaracka, K. and Bujnakova, D. (2006) Essential oils - their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. Toxicol. In Vitro, 20, 1435-1445. crossref(new window)

Barnes, J. (2003) Quality, efficacy and safety of complementary medicines: fashions, facts and the future. Part I. regulation and quality. Br. J. Clin. Pharmacol., 55, 226-233. crossref(new window)

Ali, B.H., Blunden, G., Tanira, M.O. and Nemmar, A. (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem. Toxicol., 46, 409-420. crossref(new window)

Shukla, Y. and Singh, M. (2007) Cancer preventive properties of ginger: a brief review. Food Chem. Toxicol., 45, 683-690. crossref(new window)

Vendruscolo, A., Takaki, I., Bersani-Amado, L.E., Dantas, J.A., Bersani-Amado, C.A. and Cuman, R.K. (2006) Antiinflammatory and antinociceptive activities of Zingiber officinale Roscoe essential oil in experimental animal models. Indian J. Pharmacol., 38, 58-59. crossref(new window)

Carrasco, F.R., Schmidt, G., Romero, A.L., Sartoretto, J.L., Caparroz-Assef, S.M., Bersani-Amado, C.A. and Cuman, R.K. (2009) Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils; evidence for humor- and cell-mediated responses. J. Pharm. Pharmacol., 61, 961-967. crossref(new window)

Nogueira de Melo, G.A., Grespan, R., Fonseca, J.P., Farinha, T.O., da Silva, E.L., Romero, A.L., Bersani-Amado, C.A. and Cuman, R.K. (2011) Inhibitory effects of ginger (Zingiber officinale Roscoe) essential oil on leukocyte migration in vivo and in vitro. J. Nat. Med., 65, 241-246. crossref(new window)

Lee, E. and Surh, Y.J. (1998) Induction of apoptosis in HL-60 cells by pungent vanilloids, [6]-gingerol and [6]-paradol. Cancer Lett., 134, 163-168. crossref(new window)

Wei, Q.Y., Ma, J.P., Cai, Y.J., Yang, L. and Liu, Z.L. (2005) Cytotoxic and apoptopic activities of diarylheptanoids and gingerol-related compounds from the rhizomes of Chinese ginger. J. Ethnopharmacol., 102, 177-184. crossref(new window)

Ishiguro, K., Ando, T., Maeda, O., Ohmiya, N., Niwa, Y., Kadomatsu, K. and Goto, H. (2007) Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms. Biochem. Biophys. Res. Commun., 362, 218-223. crossref(new window)

Norajit, K., Laohakunjit, N. and Kerdchoechuen, O. (2007) Antibacterial effect of Zingiberaceae essential oils. Molecules, 23, 2047-2060.

Moon, H.I., Cho, S.B. and Kim, S.K. (2011) Composition and immunotoxicity activity of essential oils from leaves of Zingiber officinale Roscoe against Aedes aegypti L. Immunopharmacol. Immunotoxicol., 33, 201-204. crossref(new window)

Sasidharan, I., Venugopal, V.V. and Menon, A.N. (2012) Essential oil composition of two unique ginger (Zingiber officinale Roscoe) cultivars from Sikkim. Nat. Prod. Res., 26, 1759-1764. crossref(new window)

Yamamoto-Ribeiro, M.M., Grespan, R., Kohiyama, C.Y., Ferreira, F.D., Mossini, S.A., Silva, E.L., Filho, B.A., Mikcha, J.M. and Machinski, M. (2013) Effect of Zingiber officinale essential oil on Fusarium verticillioides and fumonisin production. Food Chem., 141, 3147-3152. crossref(new window)

Khrimian, A., Shirali, S. and Guzman, F. (2015) Absolute configurations of zingiberenols isolated from Ginger (Zingiber officinale) rhizomes. J. Nat. Prod., 78, 3071-3074. crossref(new window)

Adams, R.P. (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy, Allured Publishing Corporation, Carol Stream, pp. 456-460.

Ji, M., Choi, J., Lee, J. and Lee, Y. (2004) Induction of apoptosis by ar-turmerone on various cell lines. Int. J. Mol. Med., 14, 253-256.

Mohammad, A.M., Razieh, Y. and Mohammad, H.S. (2005) The cytotoxic and anti-proliferative effects of 3-hydrogenkwadaphin in K562 and Jurkat cells is reduced by guanosine. J. Biochem. Mol. Biol., 38, 391-398. crossref(new window)

Finucanne, D.M., Bossy-Wetzel, E., Waterhouse, N.J., Cotter, T.G. and Green, D.R. (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-XL. J. Biol. Chem., 274, 2225-2233. crossref(new window)

Kluck, R.M., Bossy-Wetzel, E., Green, D.R. and Newmeyer, D.D. (1997) The release of cytochrome c from mitochondria : a primary site for Bcl-2 regulation of apoptosis. Science, 275, 1132-1136. crossref(new window)

Kroemer, G., Dallaporta, B. and Resche-Rigon, M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol., 60, 619-642. crossref(new window)

Agarwal, M., Walia, S., Dhingra, S. and Khambay, B.P. (2001) Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinale Roscoe (ginger) rhizomes. Pest Manag. Sci., 57, 289-300. crossref(new window)

Nogueira de Melo, G.A., Grespan, R., Fonseca, J.P., Farinha, T.O., da Silva, E.L., Romero, A.L., Bersani-Amado, C.A. and Cuman, R.K. (2011) Inhibitory effects of ginger (Zingiber officinale Roscoe) essential oil on leukocyte migration in vivo and in vitro. J. Nat. Med., 65, 241-246. crossref(new window)

Bayala, B., Bassole, I.H., Gnoula, C., Nebie, R., Yonli, A., Morel, L., Figueredo, G., Nikiema, J.B., Lobaccaro, J.M. and Simpore, J. (2014) Chemical composition, antioxidant, antiinflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso. PLoS ONE, 9, e92122. crossref(new window)

Hoferl, M., Stoilova, I., Wanner, J., Schmidt, E., Jirovetz, L., Trifonova, D., Stanchev, V. and Krastanov, A. (2015) Composition and comprehensive antioxidant activity of ginger (Zingiber officinale) essential oil from Ecuador. Nat. Prod. Commun., 10, 1085-1090.

Blair, J., Aichinger, T., Hackal, G., Hueber, K. and Dachler, M. (2001) Essential oil content and composition in commercially available dill cultivars in comparison to caraway. Ind. Crops Prod., 14, 229-239. crossref(new window)

Galambosi, B. and Peura, P. (1996) Agrobotanical features and oil content of wild and cultivated forms of caraway (Carum carvi L). J. Essent. Oil Res., 8, 389-397. crossref(new window)

Bartley, J.P. and Foley, P. (1994) Supercritical fluid extraction of australian-grown ginger (Zingiber officinale). J. Sci. Food Agric., 66, 365-371. crossref(new window)

Chen, W., Lu, Y., Gao, M., Wu, J., Wang, A. and Shi, R. (2011) Anti-angiogenesis effect of essential oil from Curcuma zedoaria in vitro and in vivo. J. Ethnopharmacol., 133, 220-226. crossref(new window)

Charriaut-Marlangue, C., Margaill, I., Represa, A., Popovici, T., Plotkine, M. and Ben-Ari, Y. (1996) Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J. Cereb. Blood Flow Metab., 16, 186-194. crossref(new window)

Ioannou, Y.A. and Chen, F.W. (1996) Quantitation of DNA fragmentation in apoptosis. Nucleic Acids Res., 24, 992-993. crossref(new window)

Collins, J.A., Schandi, C.A., Young, K.K., Vesely, J. and Willingham, M.C. (1997) Major DNA fragmentation is a late event in apoptosis. J. Histochem. Cytochem., 45, 923-934. crossref(new window)

Chen, S., Dobrovolsky, V.N., Liu, F., Wu, Y., Zhang, Z., Mei, N. and Guo, L. (2014) The role of autophagy in usnic acidinduced toxicity in hepatic cells. Toxicol. Sci., 142, 33-44. crossref(new window)

Rubio, V., Calvino, E., Garcia-Perez, A., Herraez, A. and Diez, J.C. (2014) Human acute promyelocytic leukemia NB4 cells are sensitive to esculetin through induction of an apoptotic mechanism. Chem. Biol. Interact., 220, 129-139. crossref(new window)

Semisch, A., Ohle, J., Witt, B. and Hartwig, A. (2014) Cytotoxicity and genotoxicity of nano - and microparticulate copper oxide: role of solubility and intracellular bioavailability. Part Fibre Toxicol., 11, 10. crossref(new window)

Sun, L.K., Yoshii, Y., Hyodo, A., Tsurushima, H., Saito, A., Harakuni, T., Li, Y.P., Kariva, K., Nozaki, M. and Morine, N. (2003) Apoptotic effect in the glioma cells induced by specific protein extracted from Okinawa Habu (Trimeresurus flavoviridis) venom in relation to oxidative stress. Toxicol. In Vitro, 17, 169-177. crossref(new window)

Komada, Y., Zhang, X.L., Zhou, Y.W., Ido, M. and Azumam E. (1997) Apoptotic cell death of human T lymphoblastoid cells induced by arginine deiminase. Int. J. Hematol., 65, 129-141. crossref(new window)

Zong, B., Ma, Y., Fu, D. and Zhang, C. (2013) Induction of apoptosis in osteosarcoma s180 cells by polysaccharide from Dictyophora indusiata. Cell Biochem. Funct., 31, 719-723. crossref(new window)

Ashkenazi, A. (2008) Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat. Rev. Drug Discov., 7, 1001-1012. crossref(new window)

Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol., 35, 495-516. crossref(new window)

Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B. and Borner, C. (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391, 496-499. crossref(new window)

Decaudin, D., Marzo, I., Brenner, C. and Kroemer, G. (1998) Mitochondria in chemotherapy-induced apoptosis: a prospective novel target of cancer therapy. Int. J. Oncol., 12, 141-152.

Earnshaw, W.C., Martins, L.M. and Kaufmann, S.H. (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem., 68, 383-424. crossref(new window)