JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE MULTI-DIMENSIONAL PARTITIONS OF SMALL INTEGERS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : East Asian mathematical journal
  • Volume 28, Issue 1,  2012, pp.101-107
  • Publisher : Youngnam Mathematical Society
  • DOI : 10.7858/eamj.2012.28.1.101
 Title & Authors
ON THE MULTI-DIMENSIONAL PARTITIONS OF SMALL INTEGERS
Kim, Jun-Kyo;
  PDF(new window)
 Abstract
For each dimension exceeds 1, determining the number of multi-dimensional partitions of a positive integer is an open question in combinatorial number theory. For n 14 and d 1 we derive a formula for the function where denotes the number of partitions of n arranged on a d-dimensional space. We also give an another definition of the d-dimensional partitions using the union of finite number of divisor sets of integers.
 Keywords
partitions of integers;multidimensional partition;combinatorial number theory;additive number theory;
 Language
English
 Cited by
 References
1.
G. E. Andrews, The Theory of Partitions, Reading, Massachusetts: Addison-Wesley Publishing Company, 1976.

2.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers 4th edn Oxford: Clarendon, 1960.

3.
L. Euler, De partitione numerorum, Novi Commentarii Academiae scientiarum Petropolitanae, 3 (1753), 125-169.

4.
F. Wang and D. P. Landau, Multiple-range random walk algorithm to calculate the density of states, Physical Review Letters - PHYS REV LETT, 86, no 10 (2001), 2050-2053. crossref(new window)

5.
A. O. L. Atkin, P. Bratley and I. G. Macdonald, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc. 63(4) (1967), 1097-1100.

6.
W. Fulton, Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts 35 (1997), Cambridge University Press, Cambridge.

7.
A. Yong, What is... a Young tableau?, Notices Amer. Math. Soc. 54 (2007), 240-241.